纺织学报 ›› 2019, Vol. 40 ›› Issue (02): 8-13.doi: 10.13475/j.fzxb.20180907006

• 纤维材料 • 上一篇    下一篇

化学交联改性海藻酸钠/磷虾蛋白复合纤维的制备

姚强, 郭静(), 吴静   

  1. 大连工业大学 纺织与材料工程学院, 辽宁 大连 116034
  • 收稿日期:2018-09-27 修回日期:2018-11-09 出版日期:2019-02-15 发布日期:2019-02-01
  • 通讯作者: 郭静
  • 作者简介:姚强(1994—),男,硕士生。主要研究方向为高分子材料改性与加工。
  • 基金资助:
    国家自然科学基金项目(51373027);国家自然科学基金项目(51773024);辽宁省自然科学基金项目(2015020221)

Preparation of chemically cross-linked modified sodium alginate/krill protein composite fiber

YAO Qiang, GUO Jing(), WU Jing   

  1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
  • Received:2018-09-27 Revised:2018-11-09 Online:2019-02-15 Published:2019-02-01
  • Contact: GUO Jing

摘要:

为增强海藻酸钠/磷虾蛋白(SA/AKP)复合纤维的综合性能,以硼酸为交联剂对海藻酸钠/磷虾蛋白复合纤维进行交联改性,探究了复合体系的最佳交联温度和分子间相互作用,并对改性纤维的热稳定性、力学性能和动态力学性能等进行表征。结果表明:硼酸对海藻酸钠/磷虾蛋白复合体系中分子内氢键具有明显的影响,硼酸分子与海藻酸钠分子链上的羟基发生脱水缩合反应实现交联,交联温度为80 ℃;随着硼酸加入量的增加,复合纤维的热稳定性变化不大,力学性能和储能模量逐渐提高,当体系中硼酸的质量浓度为1.5 g/L时,纤维的断裂强度有所提高,达到2.58 cN/dtex,比改性前提高了11.3%。

关键词: 复合纤维, 硼酸, 海藻酸钠, 磷虾蛋白, 交联改性

Abstract:

In order to enhance the comprehensive performance of sodium alginate/krill protein (SA/AKP) composite fiber, boric acid (H3BO3) was used as a crosslinking agent to crosslink and modify the fiber so as to prepare high-performance SA/AKP composite fiber. The interaction between optimal crosslinking temperature and molecules of the composite system was investigated. The thermal stability, mechanical properties and dynamic mechanical properties of the modified fiber were characterized. The results show that boric acid has an obvious effect on the intermolecular hydrogen bonds in the sodium alginate/krill protein composite system. Boric acid molecules and hydroxyl groups on the sodium alginate molecular chain are subjected to a dehydration condensation reaction to realize cross-linking, and the cross-linking temperature is 80 ℃, With the increase of boric acid content, the change in the thermal stability of the composite fiber is small, and the mechanical properties and storage modulus gradually increase. When the content of H3BO3 in the system is 1.5 g/L, the breaking strength of the fiber increases up to 2.58 cN/dtex, which is improved by 11.3% compared with the SA/AKP composite fiber before modification.

Key words: composite fiber, boric acid, sodium alginate, krill protein, crosslinking modification

中图分类号: 

  • TQ340.41

图1

SA/AKP复合纤维增强机制"

图2

SA/AKP与H3BO3/SA/AKP复合溶液黏度与温度的关系"

图3

SA和AKP的红外谱图"

图4

不同硼酸含量复合纤维的红外谱图"

表1

不同硼酸质量浓度各种氢键类型的拟合结果"

氢键类型 0 g/L 0.5 g/L 1 g/L 1.5 g/L
波数/
cm-1
峰面
氢键
比例/
%
波数/
cm-1
峰面
氢键
比例/
%
波数/
cm-1
峰面
氢键
比例/
%
波数/
cm-1
峰面
氢键
比例/
%
自由羟基 —OH 3 603 2.05 1.3 3 607 2.03 1.6 3 611 3.10 1.9 3 594 2.28 1.7
分子间氢键 OH…π 3 530 51.80 65.6 3 530 45.95 57.3 3 531 56.51 67.7 3 525 50.90 58.6
OH…醚氧 3 329 37.15 3 298 16.97 3 299 26.66 3 296 20.08
分子内氢键 OH…N 3 145 11.50 33.1 3 146 11.56 41.1 3 145 25.21 30.4 3 125 9.64 39.7
OH…OH 3 412 25.86 3 409 40.34 3 407 42.55 3 408 43.21
OH 环状
多聚体
3 221 24.75 3 227 13.01 3 225 6.15 3 220 11.55

表2

SA/AKP复合纤维的力学性能测试"

样品 硼酸质
量浓度/
(g·L-1)
断裂
强度/
(cN·dtex-1)
断裂
伸长
率/%
断裂
强力/
cN
初始
模量/
(cN·dtex-1)
SA/AKP 0.0 2.35 4.70 118.50 60.74
H3BO3/SA/AKP 0.5 2.43 5.24 121.52 43.00
1.0 2.54 7.40 127.91 57.54
1.5 2.58 9.20 246.60 49.13

图5

不同H3BO3质量浓度的SA/AKP复合纤维的DSC曲线"

图6

SA(a)和SA/AKP(b)复合纤维的DMA曲线"

图7

不同H3BO3质量浓度的SA/AKP复合纤维储能模量曲线"

[1] 王孝华. 海藻酸钠的提取及应用研究[D]. 重庆:重庆大学, 2004: 8-47.
WANG Xiaohua. Study on extraction and application of sodium alginate[D]. Chongqing:Chongqing University, 2004: 8-47.
[2] TIN Wuwong. Alginate graft copolymers and alginate-co-excipient physical mixture in oral drug delivery[J]. Journal of Pharmacy and Pharmacology, 2011,63:1497-1512.
doi: 10.1111/j.2042-7158.2011.01347.x pmid: 22060280
[3] 赵艳. 海藻酸钠/纳米氧化石墨复合纤维的制备及性能研究[D]. 天津:天津大学, 2010: 9-63.
ZHAO Yan. Preparation of characteristic of sodium/GO composite fibers[D]. Tianjin:Tianjin University, 2010: 9-63.
[4] 沈悦. 海藻酸钠/改性细菌纤维素共混纤维的制备与性能研究[D]. 青岛:青岛大学, 2011: 7-51.
SHEN Yue. Preparation and properties of sodium alginate/modified aacterial cellulose blend fiber[D]. Qingdao:Qingdao University, 2011: 7-51.
[5] HYUN Jungkim, HYUN Chullee, JONG Sukoh, et al. Polyelectrolyte complex composed of chitosan and sodium alginate for wound dressing application[J]. Journal of Biomaterials Science Polymer Edition, 1999,10(5):543-556.
pmid: 10357265
[6] JING Ohkim, JUNG Kilpark, SUNG Giujin, et al. Development of polyvinyl alcohol-sodium alginate gel-matrix-based wound dressing system containing nitrofurazone[J]. International Journal of Pharmaceutics, 2008,359(2):79-86.
[7] 洪颐. 可溶性甲壳素/海藻酸钠交联微球的制备及其表征和控释性能考察[J]. 医药导报, 2011,30(5):577-581.
HONG Yi. Preparation, characterization and controlled release properties of soluble chitin/sodium alginate crosslinked microspheres[J]. Herald of Medicine, 2011,30(5):577-581.
[8] ZHAN Xianpu. Characteristics of sodium alginate and its application in food[J]. Food Engineering, 2011,1(3):7-9.
[9] GAO Cuili, LI Chuanping, LI Qian, et al. Sodium alginate application as food preservative[J]. Journal of Qingdao University, 2013,28(1):77-83.
[10] JIANG Xuan, CHEN Gang, FANG Zhiqiang. The application of starch - sodium alginate composite coating on transparent paper for food packaging[J]. Advanced Materials Research, 2014,893:472-477.
[11] 冀虎. 海藻酸钠/明胶(半)互穿网络膜的制备及性能研究[D]. 武汉:武汉纺织大学, 2014: 11-64.
JI Hu. Preparation of properties of sodium alginate/gelatin(semi) IPN films[D]. Wuhan: Wuhan Textile University, 2014: 11-64.
[12] 王明强. 壳聚糖/海藻酸钠复合膜制备及性能研究[J]. 化工新型材料, 2017,5(8):59-61.
WANG Mingqiang. Preparation and property evaluation of chitosan/sodium alginate composite film[J]. New Chemical Materials, 2017,5(8):59-61.
[13] 王胜. 海藻酸钠/聚乙烯醇共混膜的制备及相关性能研究[J].山东纺织科技, 2015(5):54-56.
WANG Sheng. Preparation and related properties of sodium alginate/polyvinyl alcohol blend membranes[J].Shandong Textile Science & Technology, 2015(5):54-56.
[14] 何立芳, 邱如斌, 张夏红, 等. 海藻酸钠/聚乙烯醇共混膜制备及对离子吸附性能[J]. 环境科学与技术, 2011,33(1):48-51.
HE Lifang, QIU Rubin, ZHANG Xiahong, et al. Preparation of blend film of sodium alginate and polyvinyl alcohol and its adsorption for ions[J]. Environmental Science and Technology, 2011,33(1):48-51.
[15] 任艳. 南极磷虾蛋白加工利用的初步研究[D]. 青岛:中国海洋大学, 2009: 13-87.
REN Yan. Preliminary study on processing and utilization of antarctic krill protein[D]. Qingdao:Ocean University of China, 2009: 13-87.
[16] 刘志东, 王鲁民, 陈雪忠, 等. 南极磷虾蛋白的研究进展[J]. 食品与发酵工业, 2017,43(7):242-251.
LIU Zhidong, WNAG Lumin, CHEN Xuezhong, et al. Research progress of antarctic krill protein[J]. Food and Fermentation Industries, 2017,43(7):242-251.
[17] 冯实. 南极磷虾蛋白质的功能特性及改性[D]. 哈尔滨:哈尔滨商业大学, 2016: 13-91.
FENG Shi. Functional properties and modification of antarctic krill protein[D]. Harbin: Harbin University of Commence, 2016: 13-91.
[18] 高飞. 南极磷虾蛋白质组分特征及营养安全特性研究[D]. 哈尔滨:哈尔滨商业大学, 2016: 10-59.
GAO Fei. Study on protein composition and nutritional safety characteristics of antarctic krill protein[D]. Harbin: Harbin University of Commence, 2016: 10-59.
[19] 高飞, 韩春然, 石彦国, 等. 南极磷虾蛋白质提取条件优化[J]. 天然产物研究与开发, 2016(2):307-312.
GAO Fei, HAN Chunran, SHI Yanguo, et al. Optimization of extraction conditions of antarctic krill protein[J].Natural Product Research and Development, 2016(2):307-312.
[20] 李学才. 基于南极磷虾蛋白与海藻酸钠的仿真假发研究[D]. 大连:大连工业大学, 2014: 12-85.
LI Xuecai. Based on the antarctic krill protein and sodium alginate wig research of simulation[D]. Dalian:Dalian Polytechnic University, 2014: 12-85.
[21] 李芳, 刘俊荣, 梁姗姗, 等. 南极磷虾蛋白质的分离特性及其组分分析[J]. 大连海洋大学学报, 2013,28(2):191-194.
LI Fang, LIU Junrong, LIANG Shanshan, et al. Separation characteristics and composition analysis of antarctic krill protein[J]. Journal of Dalian Ocean University, 2013,28(2):191-194.
[22] 郭静, 李学才, 于春芳, 等. 南极磷虾蛋白的提取及其复合纤维的性能[J]. 大连工业大学学报, 2014,33(4):270-273.
GUO Jing, LI Xuecai, YU Chunfang, et al. Extraction of antarctic krill protein and properties of its composite fibers[J]. Journal of DaLian Polytechnic University, 2014,33(4):270-273.
[1] 管福成, 郭静, 吕丽华, 谭倩, 宋敬星, 张欣. 聚乙烯醇/ 磷虾蛋白纤维的氢键作用机制及其性能[J]. 纺织学报, 2020, 41(10): 7-13.
[2] 孙范忱, 郭静, 于跃, 张森. 聚羟基脂肪酸酯/ 海藻酸钠纳米纤维的制备及其性能[J]. 纺织学报, 2020, 41(05): 15-19.
[3] 郑宏飞, 汪瑞琪, 汪庆, 朱莹, 许云辉. 氧化壳聚糖改性抗菌蚕丝织物的制备及其性能[J]. 纺织学报, 2020, 41(05): 121-128.
[4] 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
[5] 李明明, 陈烨, 李夏, 王华平. 纺丝工艺对并列复合聚酯纤维性能的影响[J]. 纺织学报, 2019, 40(12): 16-20.
[6] 周铃, 靳向煜. 热气流固结纤维网串珠结构可控性及其结晶动力学[J]. 纺织学报, 2019, 40(08): 27-34.
[7] 胡雪敏, 杨文秀, 李腾. 氧化石墨烯/聚偏二氟乙烯复合纤维过滤膜的制备及其过滤性能[J]. 纺织学报, 2019, 40(04): 32-37.
[8] 孙辉, 张恒源, 咸玉龙, 周传凯, 于斌. TiO2-Ag/聚乳酸纳米复合纤维的制备及其抗菌性能[J]. 纺织学报, 2019, 40(04): 1-6.
[9] 李辉 王娇娜 赵树宇 李从举. 柔性全编织摩擦纳米发电织物的制备[J]. 纺织学报, 2018, 39(09): 34-38.
[10] 董锋 王航 滕士英 庄旭品 程博闻 . 梯度复合聚丙烯腈纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2018, 39(09): 1-7.
[11] 李倩 丁长坤 张静 杜建华 程博闻. 胶原/高分子量壳聚糖复合纤维的制备及其性能[J]. 纺织学报, 2018, 39(05): 8-13.
[12] 夏维 陈立军 赵杰 相恒学 陈文萍 郭楷圣 陈伟 张杨凯 朱美芳. 皮芯型复合储能调温聚酰胺6纤维的制备与表征[J]. 纺织学报, 2018, 39(04): 1-8.
[13] 张芮 郭静 杨云明 张森 于跃. 硼酸交联海藻酸钠/磷虾蛋白复合纤维的制备与表征[J]. 纺织学报, 2018, 39(03): 7-13.
[14] 李静静 卢辉 蒋洁 张思航 顾迎春 陈胜. 高压电性静电纺柔性氧化锌/聚偏氟乙烯复合纤维膜[J]. 纺织学报, 2018, 39(02): 1-6.
[15] 吴静 郭静 杨利军 张森 宫玉梅. 海藻酸钠/南极磷虾蛋白/聚乙烯醇复合纤维的分子作用及其性能表征[J]. 纺织学报, 2017, 38(02): 7-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!