纺织学报 ›› 2019, Vol. 40 ›› Issue (02): 38-44.doi: 10.13475/j.fzxb.20180607007

• 纺织工程 • 上一篇    下一篇

基于改进局部自适应对比法的织物疵点检测

杜帅1, 李岳阳1(), 王孟涛1, 罗海驰2, 蒋高明1   

  1. 1.江南大学 教育部针织技术工程研究中心, 江苏 无锡 214222
    2.江南大学 轻工过程先进控制教育部重点实验室, 江苏 无锡 214122
  • 收稿日期:2018-06-25 修回日期:2018-08-02 出版日期:2019-02-15 发布日期:2019-02-01
  • 通讯作者: 李岳阳
  • 作者简介:杜帅(1994—),男,硕士生。主要研究方向为图像处理在针织物上的应用。
  • 基金资助:
    国家自然科学基金资助项目(61772238);中央高校基本科研业务费专项资金资助项目(JUSRP51727A);国家轻工技术与工程一流学科自主课题资助资助项目(2018-28)

Fabric defect detection based on improved local adaptive contrast method

DU Shuai1, LI Yueyang1(), WANG Mengtao1, LUO Haichi2, JIANG Gaoming1   

  1. 1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan univevsity, Wuxi Jiangsu 214122, China
    2. Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2018-06-25 Revised:2018-08-02 Online:2019-02-15 Published:2019-02-01
  • Contact: LI Yueyang

摘要:

为提高织物疵点检测的准确率和检测效果,采用了一种基于最相似邻域的背景估计法来进行检测。首先,利用同态滤波对图像进行预处理;然后,以滤波后图像每个像素点为中心点,以11像素×39像素的窗口大小为中心区域,通过计算中心区域与周围邻域的相似度,利用最相似的邻域进行背景估计;最后,利用背景差分原理获得目标图像,并采用阈值分割和形态学方法对图像进行处理,最终获得检测结果。实验结果表明:此方法优于传统的检测方法,不仅能够检测到复杂背景下的疵点图像,而且对不同组织及光照因素影响下的织物疵点图像同样具有很好的检测结果,检测准确率可达98%,具有较高的适用性与检出率,也具有一定的抗干扰性。

关键词: 织物疵点, 疵点检测, 自适应局部对比法, 背景差分法, 阈值分割

Abstract:

In order to improve the fabric defect detection accuracy and detection effect, a background estimation method based on the most similar neighborhood patch was used to improve the detection rate. Firstly, the image was preprocessed by homomorphic filtering. Then, each pixel of the filtered image was taken as center point and window size of 11 pixel×39 pixel was taken as the central region. By calculation the similarity between the central region and the surrounding neighborhood to find out the neighborhood which was most similar to central region. So then, the purpose of background estimation was achieved. The background-difference principle was used to obtain the target image and the method of threshold segmentation and morphological was used in the image. Finally, the defection results were obtained. The experiment results show that the method is superior to the traditional detection method, not only can detection the defect image in complex background, but also has good detection results for fabric defect images under influence of external factors and different fabric weaves, the detection rate can reach 98%, and with high recognition rate, applicability and a certain degree of anti-interference.

Key words: fabric defect, defect detection, adaptive local contrast method, background difference method, threshold segmentation

中图分类号: 

  • TP391.4

图1

织物疵点图像"

图2

同态滤波前后图像对比"

图3

检测算法原理"

图4

复杂背景下的织物疵点检测结果"

图5

几种检测方法的结果对比"

图6

z1组织疵点检测结果"

图7

z2组织疵点检测结果"

图8

z3组织疵点检测结果"

表1

疵点检测统计结果"

图像类型 检测结果/张 检测率/% 综合检
测率/%
未检测出 检测出 准确率 虚警率
含疵点 2 56 96.55 - 98
不含疵点 0 42 100 0
[1] KUMAR A, PANG G K H. Defect detection in textured materials using Gabor filters[J]. IEEE Transactions on Systems Man and Cybernetics: Part B: Cybernetics, 2002,32(5):553-570.
doi: 10.1109/TSMCB.2002.1033176
[2] CAO Y, LIU R M, YANG J. Small target detection using two-dimensional least mean square (TDLMS) filter based on neighborhood analysis[J]. International Journal of Infrared & Millimeter Waves, 2008,29(2):188-200.
[3] 尉苗苗, 李岳阳, 蒋高明, 等. 应用最优Gabor滤波器的经编织物疵点检测[J]. 纺织学报, 2016,37(11):48-54.
YU Miaomiao, LI Yueyang, JIANG Gaoming, et al. Warp knit fabric defect detection method based on optimal Gabor filter[J]. Journal of Textile Research, 2016,37(11):48-54.
[4] 李岳阳, 蒋高明, 丛洪莲, 等. 基于最优Gabor滤波器的经编织物瑕疵检测方法:105205828 A[P]. 2015 -10-20.
LI Yueyang, JIANG Gaoming, CONG Honglian, et al. Warp knit fabric defect detection method based on optimal Gabor filter: 105205828 A[P]. 2015 -10-20.
[5] TONG L, WONG W K, WONG C K. Differential evolution-based optimal Gabor filter model for fabric inspection[J]. Neurocomputing, 2016,173:1386-1401.
doi: 10.1016/j.neucom.2015.09.011
[6] CHEN C L P, LI H, WEI Y, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014,52(1):574-581.
[7] 许海洋, 马龙龙, 吴健. 基于背景估计和边缘检测的文档图像二值化[J]. 计算机应用与软件, 2014,31(8):196-200.
XU Haiyang, MA Longlong, WU Jian. Document image binarisation based on back ground estimation and edge detection[J]. Computer Applications and Software, 2014,31(8):196-200.
[8] MENG B, ZHANG H, MAO Z, et al. FPGA implementation of local contrast method for infrared small target detection [C]// IEEE International Conference on Electronic Measurement & Instruments.New York:IEEE, 2016: 1293-1297.
[9] WANG Y, XU X, YUE N, et al. Edge-preserving background estimation using most similar neighbor patch for small target detection[C]// Chinese Conference on Computer Vision. Bolin:Springer Publishing Company, 2017: 85-89
[10] GONZALEZ R C, WOODS R E, EDDINS S L. Digital Image Processing Using MatLab[M]. 4th ed. Beijing:Publishing House of Electronics Industry, 2003: 94,347-359, 404-412.
[11] 徐黎明, 吕继东. 基于同态滤波和K均值聚类算法的杨梅图像分割[J]. 农业工程学报, 2015,31(14):202-208.
XU Liming, LV Jidong. Bayberry image segmentation based on homomorphic filtering and K-means clustering algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(14):202-208.
[12] 杜磊, 李立轻, 汪军, 等. 几种基于图像自适应阈值分割的织物疵点检测方法比较[J]. 纺织学报, 2014,35(6):56-61.
DU Lei, LI Liqing, WANG Jun, et al. Comparison of several fabric defect detection methods based on image self-adaptive threshold segmentation[J]. Journal of Textile Research, 2014,35(6):56-61.
[13] 刘建立, 左保齐. 基于小波变换和阈值分割的织物疵点边缘检测[J]. 丝绸, 2006(8):42-44.
LIU Jianli, ZUO Baoqi. Edge detection of fabric defects based on wavelet transform and threshold segmentation algorithm[J]. Journal of Silk, 2006(8):42-44.
[1] 朱磊, 任梦凡, 潘杨, 李博涛. 基于相似性定位和超像素分割的织物疵点检测[J]. 纺织学报, 2020, 41(10): 58-66.
[2] 周文明, 周建, 潘如如. 应用上下文视觉显著性的色织物疵点检测[J]. 纺织学报, 2020, 41(08): 39-44.
[3] 杨恩君, 廖义辉, 刘安东, 俞立. 基于低秩分解的织物疵点检测[J]. 纺织学报, 2020, 41(05): 72-78.
[4] 王文胜, 李天剑, 冉宇辰, 卢影, 黄民. 筒子纱纱笼纱杆的定位检测方法[J]. 纺织学报, 2020, 41(03): 160-167.
[5] 张缓缓, 马金秀, 景军锋, 李鹏飞. 基于改进的加权中值滤波与K-means聚类的织物缺陷检测[J]. 纺织学报, 2019, 40(12): 50-56.
[6] 王文帝, 辛斌杰, 邓娜, 李佳平, 刘宁娟. 单一视角下自适应阈值法的纱线毛羽识别及其应用[J]. 纺织学报, 2019, 40(05): 150-156.
[7] 徐洋, 朱治潮, 盛晓伟, 余智祺, 孙以泽. 基于机器视觉的鞋面特征点自动识别改进方法[J]. 纺织学报, 2019, 40(03): 168-174.
[8] 胡克满, 罗少龙, 胡海燕. 应用Canny算子的织物疵点检测改进算法[J]. 纺织学报, 2019, 40(01): 153-158.
[9] 徐启永 胡峰 王传桐 吴雨川. 改进频率调谐显著算法在疵点图像分割中的应用[J]. 纺织学报, 2018, 39(05): 125-131.
[10] 王传桐 胡峰 徐启永 吴雨川 余联庆. 改进频率调谐显著算法在疵点辨识中的应用[J]. 纺织学报, 2018, 39(03): 154-160.
[11] 何峰 周亚同 赵翔宇 刘猛 张忠伟. 纹理织物疵点窗口跳步形态学法检测[J]. 纺织学报, 2017, 38(10): 124-131.
[12] 管声启 何建新 王杰 李文森 雷鸣 . 应用小波域高斯差分滤波的起球疵点客观评价[J]. 纺织学报, 2017, 38(09): 155-161.
[13] 景军锋 张婉婉 李鹏飞. 应用显著性算法的纱线条干均匀度检测[J]. 纺织学报, 2017, 38(06): 130-135.
[14] 王传桐 胡峰 徐启永 吴雨川 余联庆. 采用Gabor滤波簇和等距映射算法的织物疵点检测方法[J]. 纺织学报, 2017, 38(03): 162-167.
[15] 李春雷 高广帅 刘洲峰 刘秋丽 李文羽. 应用方向梯度直方图和低秩分解的织物疵点检测算法[J]. 纺织学报, 2017, 38(03): 149-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!