纺织学报 ›› 2019, Vol. 40 ›› Issue (02): 58-62.doi: 10.13475/j.fzxb.20180908405

• 纺织工程 • 上一篇    下一篇

喷气涡流纺纱线热黏合增强工艺

林燕燕1,2, 邹专勇1(), 陈玉香1, 杨艳秋1   

  1. 1.绍兴文理学院 浙江省清洁染整技术研究重点实验室, 浙江 绍兴 312000
    2.东华大学 纺织学院, 上海 201620
  • 收稿日期:2018-09-30 修回日期:2018-11-12 出版日期:2019-02-15 发布日期:2019-02-01
  • 通讯作者: 邹专勇
  • 作者简介:林燕燕(1996—),女,硕士生。主要研究方向为喷气涡流纺纱线加工技术。
  • 基金资助:
    国家自然科学基金资助项目(51573095)

Thermal adhesion enhancement process of air jet vortex spun yarn

LIN Yanyan1,2, ZOU Zhuanyong1(), CHEN Yuxiang1, YANG Yanqiu1   

  1. 1. Key Laboratory of Clean Dyeing and Finishing Technology in Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2018-09-30 Revised:2018-11-12 Online:2019-02-15 Published:2019-02-01
  • Contact: ZOU Zhuanyong

摘要:

针对喷气涡流纺纱强力不高的问题,引入低熔点涤纶纤维利用热黏合机制增强喷气涡流纺纱线,借助T检验法比较不同热接触方式对纱线断裂功影响的显著性差异,通过正交试验研究热处理温度、热处理速度及牵伸倍数对纱线断裂功的影响规律,并进行最优工艺验证。结果表明:原纱采用非接触热处理方式断裂功提升更显著;纱线断裂功随热处理温度升高,先增加后下降,随速度增加,呈上升趋势;随牵伸倍数的增加,断裂功显著提高;最优热处理工艺为热处理温度145 ℃,热处理速度600 cm/min,牵伸倍数1.06。最优工艺热处理后喷气涡流纺纱线断裂功可提高13%。

关键词: 喷气涡流纺, 低熔点涤纶, 纱线断裂功, 热黏合

Abstract:

Aiming at poor strength of air jet vortex spun yarn, low-melting point polyester fiber was introduced to reinforce air jet vortex spun yarn by heat bonding. The significant differences of the influence of different thermal contact modes on the yarn fracture work were compared by means of T-test. Orthogonal design was used to study the influence of heat treatment temperature, heat treatment speed and draw ratio on the yarn fracture work, and the optimal process was verified. The results show that the original yarn subjected to non-contact heat treatment has significantly improved fracture work. The fracture work of yarns increases first and then decreases with the rise of heat treatment temperature. When the speed increases, it shows an upward trend. With the increase of the draw ratio, the fracture work improves obviously. The optimal heat treatment process is: heat treatment temperature of 145 ℃, heat treatment speed of 600 cm/min, and draw ratio of 1.06, and the fracture work of the jet vortex spun yarn can be increased by 13% after the optimal process heat treatment.

Key words: air jet vortex spinning, low melting point polyester, fracture work of yarn, thermal adhesion

中图分类号: 

  • TS131

表1

原料规格与性能指标"

纤维
种类
线密度/
dtex
长度/
mm
断裂强度/
(cN·dtex-1)
断裂伸长
率/%
弹性模量/
(cN·dtex-1)
粘胶 1.33 38 2.506 17.53 4.82
涤纶 2.22 51 5.24 31.78 10.01

图1

热处理工艺流程图 1,8—纱筒;2,7—导纱器;3—后牵伸辊;4—热辊;5—热空气通道;6—前牵伸辊。"

表2

因素水平表"

水平 A B C
热处理温度/ ℃ 热处理速度/(cm·min-1) 牵伸倍数
1 130 300 1.00
2 145 600 1.03
3 160 900 1.06

图2

粘胶/低熔点涤纶喷气涡流纺原纱的SEM照片"

表3

正交试验结果及极差分析"

试验
序号
A B A×B C 断裂功/
(N·mm)
1 1 1 1 1 86.545
2 1 2 2 2 91.369
3 1 3 3 3 89.443
4 2 1 2 3 92.680
5 2 2 3 1 88.253
6 2 3 1 2 88.798
7 3 1 3 2 84.205
8 3 2 1 3 87.105
9 3 3 2 1 88.862
K1 89.119 87.810 87.483 87.887
K2 89.910 88.909 90.970 88.124
K3 86.724 89.034 87.300 89.743
R 3.186 1.224 3.670 1.856

表4

最佳工艺结果"

指标
类型
断裂强
力/N
断裂伸
长率/%
弹性模量/
(cN·dtex-1)
断裂功/
(N·mm)
原纱 2.489 11.061 24.339 85.394
最佳工艺 2.809 11.339 25.321 96.534

图3

粘胶/低熔点涤纶喷气涡流纺纱线热处理后SEM照片"

[1] BECEREN Y, NERGIS B U. Comparison of the effects of cotton yarns produced by new, modified and conventional spinning systems on yarn and knitted fabric performance[J]. Textile Research Journal, 2008,78(4):297-303.
[2] ORTLEK H G, ONAL L. Comparative study on the characteristics of knitted fabrics made of vortex-spun viscose yarns[J]. Fibers and Polymers, 2008,9(2):194-199.
[3] 邹专勇, 俞建勇, 薛文良, 等. 喷气涡流纺喷嘴内部三维流场的数值研究[J]. 纺织学报, 2008,29(2):86-89.
ZOU Zhuanyong, YU Jianyong, XUE Wenliang, et al. Numerical study of three-dimensional flow field inside thenozzle of air jet vortex spinning[J]. Journal of Textile Research, 2008,29(2):86-89.
[4] LI M, YU C, SHANG S. Effect of vortex tube structure on yarn quality in vortex spinning machine[J]. Fibers and Polymers 2014,15(8):1786-1791.
[5] 邹专勇, 俞建勇, 薛文良, 等. 喷气涡流纺工艺参数对气流场影响的数值计算[J]. 纺织学报, 2008,29(4):32-36.
ZOU Zhuanyong, YU Jianyong, XUE Wenliang, et al. Numerical computation of flow filed affected by process parameters in air jet vortex spinning machine[J]. Journal of Textile Research, 2008,29(4):32-36.
[6] 陈洪立, 李炯, 金玉珍, 等. 空心锭结构参数对喷气涡流纺内流场的影响[J]. 纺织学报, 2017,38(12):135-140.
CHEN Hongli, LI Jiong, JIN Yuzhen, et al. Influence of hollow spindle structure parameters on flow field of air jetvortex spinning[J]. Journal of Textile Research, 2017,38(12):135-140.
[7] KUTHALAM E S, SENTHILKUMAR P. Effect of fiber fineness and spinning speed on polyester vortex spun yarn properties[J]. Fibres & Textiles in Eastern Europe, 2013, 21, 5(101):35-39.
[8] NAZAN Erdumlu, BULENT Ozipek. Effect of the draft ratio on the properties of vortex spun yarn[J]. Fibres & Textiles in Eastern Europe, 2010,18(3):38-42.
[9] ORTLEK H G, ULKU S. Effect of some variables on properties of 100% cotton vortex spun yarn[J]. Textile Research Journal, 2005,75(6):458-461.
[10] HAN C, XUE W, CHENG L, et al. Theoretical analysis of the yarn fracture mechanism of self-twist jet vortex spinning[J]. Textile Research Journal, 2017,87(11):1394-1402.
[11] HAN C, XUE W, CHENG L, et al. Comparative analysis of different jet vortex spinning hollow spindle groove structures on yarn mechanism and yarn properties[J]. Textile Research Journal, 2016,86(19):2022-2031.
[12] THILAGAVATHI G, MUTHUKUMAR N, KUMAR K V, et al. Physical and thermal comfort properties of viscose fabrics made from vortex and ring spun yarns[J]. The Institution of Engineers (India): Series E, 2016,98(1):65-70.
[13] MONTSERRAT S, ROMAN F, COLOMER P. Study of the crystallization and melting region of pet and pen and their blends by TMDSC[J]. Journal of Thermal Analysis and Calorimetry, 2003,72:657-666.
[1] 何建, 裴泽光, 周健, 熊祥章, 吕海辰. 喷气涡流纺金属丝包芯纱成纱过程的在线观测与分析[J]. 纺织学报, 2019, 40(05): 136-143.
[2] 郭臻, 李新荣, 卜兆宁, 袁龙超. 喷气涡流纺中纤维运动的三维数值模拟[J]. 纺织学报, 2019, 40(05): 131-135.
[3] 尚珊珊, 郁崇文, 杨建平, 钱希茜. 喷气涡流纺纺纱过程中的气流场数值模拟[J]. 纺织学报, 2019, 40(03): 160-167.
[4] 刘春丽 陈慰来 梁佳琦. 废纺再生毡基材料的制备及其性能[J]. 纺织学报, 2018, 39(11): 56-60.
[5] 姚江薇 邹专勇 闫琳琳 卫国 唐佩君. 喷气涡流纺纱线拉伸断裂强力预测模型构建与验证[J]. 纺织学报, 2018, 39(10): 32-37.
[6] 闫琳琳 邹专勇 卫国 程隆棣. 基于螺旋导引槽空心锭子的喷气涡流纺加捻腔流场模拟[J]. 纺织学报, 2018, 39(09): 139-145.
[7] 张岩 裴泽光 陈革. 喷气涡流纺金属丝包芯纱的制备及其结构与性能[J]. 纺织学报, 2018, 39(05): 25-31.
[8] 韩晨晨 程隆棣 高卫东 薛元 杨瑞华. 基于有限元模型的喷气涡流纺纤维运动轨迹模拟[J]. 纺织学报, 2018, 39(02): 32-37.
[9] 袁龙超 李新荣 郭臻 蒋秀明. 喷气涡流纺喷嘴结构对流场影响的研究进展[J]. 纺织学报, 2018, 39(01): 169-178.
[10] 韩晨晨 程隆棣 高卫东 薛元 薛文良 杨瑞华 . 传统型与自捻型喷气涡流纺的对比[J]. 纺织学报, 2018, 39(01): 25-31.
[11] 陈洪立 李炯 金玉珍 武传宇 胡旭东. 空心锭结构参数对喷气涡流纺内流场的影响[J]. 纺织学报, 2017, 38(12): 135-140.
[12] 谷有众 高卫东 卢雨正 刘建立 杨瑞华. 应用遗传算法优化支持向量回归机的喷气涡流纺纱线质量预测[J]. 纺织学报, 2016, 37(07): 142-148.
[13] 周金香 邹专勇 黄建光 许梦露 陈佳慧 金亚琪 张莲莲. 喷气涡流纺成纱工艺对色纺竹浆纤维针织物性能的影响[J]. 纺织学报, 2015, 36(06): 30-36.
[14] 邹专勇. 喷气涡流纺成纱工艺对竹浆纤维色纺纱性能的影响[J]. 纺织学报, 2014, 35(2): 23-0.
[15] 尚珊珊 郁崇文. 喷气涡流纺涡流管喷孔工艺的实验研究[J]. 纺织学报, 2013, 34(6): 34-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!