纺织学报 ›› 2019, Vol. 40 ›› Issue (02): 173-180.doi: 10.13475/j.fzxb.20180801808
• 综合述评 • 上一篇
CHEN Yue, ZHAO Yonghuan, CHU Zhudan, ZHUANG Zhishan, QIU Linlin, DU Pingfan()
摘要:
随着可穿戴技术的快速发展,对柔性锂电池的需求日益增加,将电化学性能优异的活性电极材料与柔性纳米碳基材料进行复合,是目前制备高性能柔性锂电池电极的热门研究方向。本文主要对碳纤维及其织物在锂离子和锂硫电池柔性电极材料中的研究与应用情况进行综述,总结了制备柔性复合电极材料的不同方法及其进展,包括静电纺丝技术、水热法、热处理、涂覆、磁控溅射、原子层沉积和热刻蚀等,所获得的电极材料均在某方面表现出优异性能,例如可逆容量高、循环性能优异、力学强度增强等。最后对基于碳纤维及其织物的柔性锂电池电极的未来发展提出了展望。
中图分类号:
[1] | LI D, WANG D, RUI K, et al. Flexible phosphorus doped carbon nanosheets/nanofibers: electrospun preparation and enhanced Li-storage properties as free-standing anodes for lithium ion batteries[J]. Journal of Power Sources, 2018,384:27-33. |
[2] | DUSASTRE V, TARASCON J M, MICHAEL Grätzel, et al. Materials for Sustainable Energy: a Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group[M]. UK: Co-Published with Macmillan Publishers Ltd, 2010: 171-179. |
[3] |
ZHU J, SAKAUSHI K, CLACEL G, et al. A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting[J]. Journal of the American Chemical Society, 2015,137(16):5480-5485.
doi: 10.1021/jacs.5b01072 pmid: 25851622 |
[4] |
LIU T, FINN L, YU M, et al. Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability[J]. Nano Letters, 2014,14(5):2522-2527.
doi: 10.1021/nl500255v pmid: 24678990 |
[5] |
WANG G, WANG H, LU X, et al. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability[J]. Advanced Materials, 2014,26(17):2676-2682.
pmid: 24496722 |
[6] | HE Y H, MATTHEWS B, WANG J Y, et al. Innovation and challenges in materials design for flexible rechargeable batteries: from 1D to 3D[J]. Journal of Materials Chemistry A, 2018,6(3), 735-753. |
[7] | 闻雷, 陈静, 罗洪泽, 等. 石墨烯在柔性锂离子电池中的应用及前景[J]. 科学通报, 2015,60(7):630-644. |
WEN Lei, CHEN Jing, LUO Hongze, et al. Graphene for flexible lithium-ion batteries: applications and prospects[J]. Chinese Science Bulletin, 2015,60(7):630-644. | |
[8] | LI J Q, JING M X, HAN C, et al. A 3D heterogeneous FeTiO3/TiO2@C fiber membrane as a self-standing anode for power Li-ion battery[J]. Applied Physics A, 2018,124(4):332-339. |
[9] |
LIU S, WANG Z, YU C, et al. A flexible TiO2(β)-based battery electrode with superior power rate and ultralong cycle life[J]. Advanced Materials, 2013,25(25):3462-3467.
doi: 10.1002/adma.201300953 pmid: 23696317 |
[10] | ZHANG B, YU Y, HUANG Z, et al. Exceptional electrochemical performance of freestanding electrospun carbon nanofiber anodes containing ultrafine SnOx particles[J]. Energy & Environmental Science, 2012,5(12):9895-9902. |
[11] | LEE G H, MOON S H, KIM M C, et al. Molybdenum carbide embedded in carbon nanofiber as a 3D flexible anode with superior stability and high-rate performance for Li-ion batteries[J]. Ceramics International, 2018,44(7):7972-7977. |
[12] | WANG F, LI C, ZHONG J, et al. A flexible core-shell carbon layer MnO nanofiber thin film via host-guest interaction: construction, characterization, and electrochemical performances[J]. Carbon, 2017,128:277-286. |
[13] | LI Z, TANG B H. Mn3O4/nitrogen-doped porous carbon fiber hybrids involving multiple covalent interactions and open voids as flexible anodes for lithium-ion batteries[J]. Green Chemistry, 2017,19(24):5862-5873. |
[14] | 管纪鹏. 静电纺丝法制备柔性锂离子电池负极材料及其性能研究[D]. 杭州:杭州师范大学, 2015: 71-72. |
GUAN Jipeng. Fabrication of flexible anode materials for flexible lithium-ion battery via electrospinning[D]. Hangzhou: Hangzhou Normal University, 2015: 71-72. | |
[15] | SHEN L, DING B, NIE P, et al. Advanced energy-storage architectures composed of spinel lithium metal oxide nanocrystal on carbon textiles[J]. Advanced Energy Materials, 2013,3(11):1484-1489. |
[16] | LUO Y, LUO J, JIANG J, et al. Seed-assisted synjournal of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications[J]. Energy & Environmental Science, 2012,5(4):6559-6566. |
[17] | JIANG C, DING W, WU H, et al. Hierarchical Li4Ti5O12 nanosheet arrays anchoring on carbon fiber cloth as ultra-stable free-standing anode of Li-ion battery[J]. Ceramics International, 2017,44(3):3040-3047. |
[18] | SHEN L, CHE Q, LI H, et al. Metal oxides: mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder‐free flexible electrodes for energy storage[J]. Advanced Functional Materials, 2014,24(18):2736-2736. |
[19] | LIU B, WANG X F, LIU B Y, et al. Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-urchins-on-carbon-fibers electrodes[J]. Nano Research, 2013,6(7):525-534. |
[20] | LI W, WANG X, LIU B, et al. Highly reversible lithium storage in hierarchical Ca2Ge7O16 nanowire arrays/carbon textile anodes.[J]. Chemistry-A European Journal, 2013,19(26):8650-8656. |
[21] | 王健波. CO3O4纳米线/碳布柔性电池负极的制备及其电化学性能[D]. 哈尔滨:哈尔滨工业大学, 2013: 3-4. |
WANG Jianbo. Preparation and electrochemical performance of CO3O4 nanowire/carbon fabric flexible battery anode[D]. Harbin: Harbin Institute of Technology, 2013: 3-4. | |
[22] | BALOGUN M S, WU Z, LUO Y, et al. High power density nitridated hematite (α-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries[J]. Journal of Power Sources, 2016,308:7-17. |
[23] |
GAO Z, SONG N N, ZHANG Y Y, et al. Cotton-textile-enabled, flexible lithium-ion batteries with enhanced capacity and extended lifespan[J]. Nano Letters, 2015,15(12):8194-8203.
doi: 10.1021/acs.nanolett.5b03698 pmid: 26588035 |
[24] | DENG Z, JIANG H, HU Y, et al. 3D ordered macroporous MoS2@C nanostructure for flexible Li-ion batteries[J]. Advanced Materials, 2017,29(10):20-26. |
[25] | LIU B, WANG X, CHEN H, et al. Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries.[J]. Scientific Reports, 2013,3(15):1622-1628. |
[26] | CHENG S, SHI T, TAO X, et al. In-situ oxidized copper-based hybrid film on carbon cloth as flexible anode for high performance lithium-ion batteries[J]. Electrochimica Acta, 2016,212:492-499. |
[27] | JOSHI B, SAMUEL E, KIM M W, et al. Atomic-layer-deposited TiO2-SnZnO/carbon nanofiber composite as highly stable, flexible and freestanding anode material for lithium-ion batteries[J]. Chemical Engineering Journal, 2018(338):72-81. |
[28] | BALOGUN M S, QIU W, LYU F, et al. All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode[J]. Nano Energy, 2016,26:446-455. |
[29] | Du Y, Tang Y, Chang C. Hollow carbon cloth enhances the performance of red phosphorus for flexible lithium ion battery[J]. Journal of the Electrochemical Society, 2016,163(14):2938-2942. |
[30] | 刘冠伟, 张亦弛, 慈松, 等. 柔性电化学储能器件研究进展[J]. 储能科学与技术, 2017,6(1):52-68. |
LIU Guanwei, ZHANG Yichi, CI Song, et al. Research progress on flexible electrochemical energy storage devices[J]. Energy Storage Science and Technology, 2017,6(1):52-68. | |
[31] | 闻雷, 梁骥, 石颖, 等. 柔性锂硫电池的材料设计与实现[J]. 储能科学与技术, 2018,3(7):465-470. |
WEN Lei, LIANG Ji, SHI Ying, et al. Materials design and its implementation for flexible Li-S batteries[J]. Energy Storage Science and Technology, 2018,3(7):465-470. | |
[32] | CAO Z, WANG C, CHEN J. Novel mesoporous carbon nanofibers prepared via electrospinning method as host materials for Li-S battery[J]. Materials Letters, 2018,225:157-160. |
[33] | ZHAO X, KIM M, LIU Y, et al. Root-like porous carbon nanofibers with high sulfur loading enabling superior areal capacity of lithium sulfur batteries[J]. Carbon, 2018,128:138-146. |
[34] | KANG W, FAN L, DENG N, et al. Sulfur-embedded porous carbon nanofiber composites for high stability lithium-sulfur batteries[J]. Chemical Engineering Journal, 2018,333:185-190. |
[35] |
CAITLIN D, SHENG-HENG C, ARVINDER S, et al. Binder-free, freestanding cathodes fabricated with an ultra-rapid diffusion of sulfur into carbon nanofiber mat for lithium, sulfur batteries[J]. Materials Today Energy, 2018,9:336-344.
doi: 10.1016/j.mtener.2018.06.004 |
[36] | WANG X, BI X, WANG S, et al. High-rate and long-term cycle stability of Li-S batteries enabled by Li2S/TiO2-impregnated hollow carbon nanofiber cathodes[J]. ACS applied materials & interfaces, 2018,10(19):16552-16560. |
[37] |
CHUNG S H, CHANG C H, MANTHIARM A. A carbon-cotton cathode with ultrahigh-loading capability for statically and dynamically stable lithium-sulfur batteries[J]. ACS Nano, 2016,10(11):10462-10470.
doi: 10.1021/acsnano.6b06369 pmid: 27783490 |
[38] | REN W, MA W, UMAIR M M, et al. CoO/Co-activated porous carbon cloth cathode for high performance Li-S batteries[J]. Chem Sus Chem, 2018,11(16):2695-2702. |
[39] |
GAO P, XU S, CHEN Z, et al. Flexible and hierarchically structured sulfur composite cathode based on the carbonized textile for high-performance Li-S batteries[J]. ACS Applied Materials & Interfaces, 2018,10(4):3938-3947.
doi: 10.1021/acsami.7b16174 pmid: 29309733 |
[40] |
ELAZARI R, SALITRA G, GARSUCH A, et al. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries[J]. Advanced Materials, 2011,23(47):5641-5644.
doi: 10.1002/adma.201103274 pmid: 22052740 |
[41] | HAN X, XU Y, CHEN X, et al. Reactivation of dissolved polysulfides in Li-S batteries based on atomic layer deposition of Al2O3, in nanoporous carbon cloth[J]. Nano Energy, 2013,2(6):1197-1206. |
[42] | ZHONG Y, CHAO D, DENG S, et al. Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials, 2018,28(38):1706391. |
[43] |
ZHEANG G, YANG Y, CHA J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries[J]. Nano Letters, 2011,11(10):4462-4467.
doi: 10.1021/nl2027684 pmid: 21916442 |
[1] | 沈岳, 蒋高明, 刘其霞. 梯度结构活性碳纤维毡吸声性能分析[J]. 纺织学报, 2020, 41(10): 29-33. |
[2] | 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8. |
[3] | 戴鑫, 李晶, 陈晨. 镀铜碳纤维丝束细观耐磨性的有限元仿真模拟[J]. 纺织学报, 2020, 41(06): 27-35. |
[4] | 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173. |
[5] | 路浩, 陈原. 基于机器视觉的碳纤维预浸料表面缺陷检测方法[J]. 纺织学报, 2020, 41(04): 51-57. |
[6] | 赵亚奇, 郭雯静, 杜玲枝, 赵振新, 赵海鹏. 自由基引发剂制备高相对分子质量聚丙烯腈研究进展[J]. 纺织学报, 2020, 41(04): 174-180. |
[7] | 王翔华, 成 玲, 张一帆, 彭海锋, 黄志文, 刘晓志. 三维机织复合材料板簧式起落架结构设计及其有限元分析[J]. 纺织学报, 2020, 41(03): 68-77. |
[8] | 赵颖会, 顾迎春, 胡斐, 林佳友, 叶蓝琳, 李静静, 陈胜. 芳香族聚酰胺纳米纤维复合材料研究进展 [J]. 纺织学报, 2020, 41(01): 184-189. |
[9] | 董科, 李思明, 吴官正, 黄虹蓉, 林钟石, 肖学良. 碳纤维/ 涤纶刺绣心电电极制备及其性能 [J]. 纺织学报, 2020, 41(01): 56-62. |
[10] | 张泽, 徐卫军, 康宏亮, 徐坚, 刘瑞刚. 高性能聚丙烯腈基碳纤维制备技术几点思考[J]. 纺织学报, 2019, 40(12): 152-161. |
[11] | 李树锋, 程博闻, 罗永莎, 王辉, 徐经伟. 聚丙烯腈基活性中空碳纳米纤维制备及其性能[J]. 纺织学报, 2019, 40(10): 1-6. |
[12] | 阮芳涛, 施建, 徐珍珍, 邢剑. 碳纤维增强树脂基复合材料的回收及其再利用研究进展[J]. 纺织学报, 2019, 40(06): 152-157. |
[13] | 郑振荣, 智伟, 韩晨晨, 赵晓明, 裴晓园. 碳纤维织物在热流冲击下的热传递数值模拟[J]. 纺织学报, 2019, 40(06): 38-43. |
[14] | 杨静, 刘艳君. 石墨烯-棉针织物电极材料的制备及其性能[J]. 纺织学报, 2019, 40(03): 90-95. |
[15] | 叶伟, 孙雷, 余进, 孙启龙. 磁性颗粒/碳纤维轻质柔软复合材料制备及其吸波性能[J]. 纺织学报, 2019, 40(01): 97-102. |
|