纺织学报 ›› 2019, Vol. 40 ›› Issue (03): 71-75.doi: 10.13475/j.fzxb.20180303005
摘要:
为获得高质量比和高取向度的长纤维增强热塑性复合材料,通过牵切工艺将玻璃纤维和聚丙烯纤维混合成为须条,将须条正交铺层后用热压方法制备玻璃纤维/聚丙烯长纤维热塑性复合材料,然后对复合材料的形貌、力学性能和动态力学性能进行测试和分析。结果表明:复合材料中玻璃纤维的平均长度为22.9 mm,质量分数为45.73%,纤维伸直度高,取向度高,分散性好;基体材料能够充分浸润玻璃纤维,复合材料具有较小的孔隙率,其值为1.58%,且该复合材料比挤出模压得到的复合材料具有更好的力学性能;复合材料的玻璃化转变温度为73.4 ℃,在温度为150 ℃时,能够保持较高的储能模量和较小的损耗因子,具有良好的热力学性能。
中图分类号:
[1] | 方鲲, 吴丝竹, 张国荣, 等. 长纤维增强热塑性复合材料在汽车零部件上的应用进展[J]. 中国塑料, 2009,23(3):13-18. |
FANG Kun, WU Sizhu, ZHANG Guorong, et al. Progress in applications of long fiber reinforced thermoplastics in automotive parts[J]. China Plastics, 2009,23(3):13-18. | |
[2] | CHRISTOPH Schneeberger, JOANNA C H Wong, PAOLO Ermanni, Hybrid bicomponent fibres for thermoplastic composite preforms[J]. Composites Part A, 2017(103):69-73. |
[3] |
SVENSSON Shishoo Gilchrist. Manufacturing of thermoplastic composites from commingled yarns: a review[J]. Journal of Thermoplastic Composite Materials, 1998,11(1):22-56.
doi: 10.1177/089270579801100102 |
[4] |
THOMANNY U I, ERMANNI P. The influence of yarn structure and processing conditions on the laminate quality of stampformed carbon and thermoplastic polymer fiber commingled yarns[J]. Journal of Thermoplastic Composite Materials, 2004,17(3):259-283.
doi: 10.1177/0892705704041988 |
[5] | HOUPHOUËT-BOIGNY C, PLUMMER C J G, WAKEMAN M D, et al. Towards textile-based fiber-reinforced thermoplastic nanocomposites: melt spun polypropylene-montmorillonite nanocomposite fibers[J]. Polymer Engineering & Science, 2007,47(7):1122-1132. |
[6] | 董卫国. 混纤纱复合材料研究进展[J]. 天津工业大学学报, 2006,25(2):22-26. |
DONG Weiguo. Review of thermoplastic composites made from commingled yarns[J]. Journal of Tianjin Polytechnic University, 2006,25(2):22-26. | |
[7] | BAGHAEI B, SKRIFVARS M, BERGLIN L. Characterization of thermoplastic natural fibre composites made from woven hybrid yarn prepregs with different weave pattern[J]. Composites Part A, 2015,76(36):154-161. |
[8] | 朱龙彪, 王昌国, 严晓照, 等. 纤维牵断成条机设计[J]. 纺织学报, 2007,28(12):107-109. |
ZHU Longbiao, WANG Changguo, YAN Xiaozhao, et al. Design of fiber stretch-breaking sett frame[J]. Journal of Textile Research, 2007,28(12):107-109. | |
[9] | 刘洋, 季晓雷, 郁崇文, 等. 亚麻牵切中纤维断裂过程和规律的研究[J]. 中国麻业, 2008,30(1):39-43. |
LIU Yang, JI Xiaolei, YU Chongwen, et al. Study on the process and principle of stretch-breaking of flax fiber[J]. Plant Fiber Sciences in China, 2008,30(1):39-43. | |
[10] | 陈东, 周秀玲. 锈钢纤维牵切工艺的研究[J]. 棉纺织技术, 2008,36(7):16-19. |
CHEN Dong, ZHOU Xiuling. Study on draft cutting processing of stainless steel fibre[J]. Cotton Textile Technology, 2008,36(7):16-19. | |
[11] | 吴绥菊, 郁崇文, 季晓雷. 牵切过程中纤维长度不匀率分析[J]. 纺织学报, 2012,33(3):34-37. |
WU Suiju, YU Chongwen, JI Xiaolei. Control of fiber length irregularity in stretch-breaking process[J]. Journal of Textile Research, 2012,33(3):34-37. | |
[12] | BALAJI K T, PILLAY S, NING H, et al. Process simulation, design and manufacturing of a long fiber thermoplastic composite for mass transit application[J]. Composites Part A, 2008(39):1512-1521. |
[13] |
BIJSTERBOSCH H, GAYMANS R J. Polyamide 6-long glass fiber injection moldings[J]. Polymer Composites, 1995,16(5):363-369.
doi: 10.1002/(ISSN)1548-0569 |
[14] | 董卫国, 黄故. 三维机织热塑复合材料的制作与性能[J]. 纺织学报, 2005,26(6):107-108. |
DONG Weiguo, HUANG Gu. Manufacture and performance of 3D-woven thermoplastic composite material[J]. Journal of Textile Research, 2005,26(6):107-108. | |
[15] | THOMASON J L, VLUG M A. Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: tensile and flexural modulus[J]. Composites Part A, 1996,27(6):477-84. |
[16] | AKONDA M H, LAWRENCE C A, WEAGER B M. Recycled carbon fibre-reinforced polypropylene thermoplastic composites[J]. Composites Part A, 2012,43:79-86. |
[17] | 梁基照. 无机粒子填充聚合物复合材料的储能模量及其表征[J]. 华南理工大学学报 (自然科学版), 2008,36(11):143-146. |
LIANG Jizhao. Storage modulus and its characterization of inorganic particulate filled polymer composites[J]. Journal of South China University of Technology(Natural Science Edition), 2008,36(11):143-146. | |
[18] | 薛东, 刘芹, 雷文, 等. 动态力学分析方法在塑木复合材料研究中的应用[J]. 高分子通报, 2013,49(7):73-76. |
XUE Dong, LIU Qin, LEI Wen, et al. The application of dynamical mechanical analysis technology in the researches of wood plastic composites[J]. Polymer Bulletin, 2013,49(7):73-76. |
[1] | 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7. |
[2] | 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14. |
[3] | 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31. |
[4] | 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14. |
[5] | 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173. |
[6] | 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14. |
[7] | 岳程飞, 丁长坤, 李璐, 程博闻 . 碳化二亚胺/ 羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41(03): 1-7. |
[8] | 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105. |
[9] | 崔一帆, 侯巍, 周千熙, 闫俊, 路艳华, 何婷婷. 丝胶温敏凝胶对棉织物性能的影响[J]. 纺织学报, 2019, 40(12): 74-78. |
[10] | 张娇, 高雪峰, 王玉周, 刘海辉, 张兴祥. 聚酰胺66/氨基化多壁碳纳米管纤维制备及其性能[J]. 纺织学报, 2019, 40(11): 1-8. |
[11] | 杨帆, 刘俊华, 边昂挺, 王燕萍, 钱琦渊, 倪建华, 夏于旻, 何勇, 王依民. 热处理对热致液晶聚芳酯纤维结构与性能的影响[J]. 纺织学报, 2019, 40(11): 9-12. |
[12] | 吴利伟, 王伟, 林佳弘, 姜茜. 芳纶/超高分子量聚乙烯织物增强聚氨酯夹芯复合材料制备及其力学性能[J]. 纺织学报, 2019, 40(07): 64-70. |
[13] | 刘淑萍, 李亮, 刘让同, 崔世忠, 王艳婷. 羧甲基纤维素钠改性角蛋白膜的结构与性能[J]. 纺织学报, 2019, 40(06): 14-19. |
[14] | 刘金鑫, 张海峰, 张星, 黄晨, 郑晓冰, 靳向煜. 多级拉伸与热定型对聚乙烯/聚丙烯双组分纤维结构和性能的影响[J]. 纺织学报, 2019, 40(05): 24-29. |
[15] | 莫达杰, 李旭明, 许增慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸阻燃纤维的制备及其性能[J]. 纺织学报, 2019, 40(05): 12-17. |
|