纺织学报 ›› 2019, Vol. 40 ›› Issue (03): 160-167.doi: 10.13475/j.fzxb.20180304708

• 管理与信息化 • 上一篇    下一篇

喷气涡流纺纺纱过程中的气流场数值模拟

尚珊珊1,2,3, 郁崇文1,2, 杨建平1,2(), 钱希茜1,2   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织面料技术教育部重点实验室, 上海 201620
    3.上海工程技术大学, 上海 201620
  • 收稿日期:2018-03-21 修回日期:2018-12-13 出版日期:2019-03-15 发布日期:2019-03-15
  • 通讯作者: 杨建平
  • 作者简介:尚珊珊(1987—),女,博士生。主要研究方向为新型纺纱技术及相关理论。

Numerical simulation of airflow field in vortex spinning process

SHANG Shanshan1,2,3, YU Chongwen1,2, YANG Jianping1,2(), QIAN Xixi1,2   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    3. Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2018-03-21 Revised:2018-12-13 Online:2019-03-15 Published:2019-03-15
  • Contact: YANG Jianping

摘要:

为明确高速气流成纱过程中气流产生和发展变化的规律,解决当前研究中存在的不足,对喷气涡流纺初始引纱过程和正常稳定纺纱过程的气流进行三维数值模拟及理论分析,并采用纺纱实验和借助扫描电子显微镜技术验证数值模拟结果。结果表明:纺纱初始时气流扰动小,湍流少,气流流线规则有序发展,喷嘴内负压气流产生强大吸力利于顺利引纱,模拟推测纤维的集束性较好,包缠和抱合效果较差;正常纺纱过程中气流场不稳定,湍流现象明显,气流轨迹复杂,并出现涡流和回流现象,回流为纱提供额外张力,利于提高纱线强力,模拟推测纤维的包缠和抱合效果较好,这也与纺纱实验结果相吻合。

关键词: 喷气涡流纺, 纺纱过程, 气流场, 数值模拟

Abstract:

In order to explicit the discipline of airflow generation and development in yarn formation process under the action of high speed airflow and overcome shortcomings in the current research, three-dimensional numerical simulation of the airflow characteristics during the whole vortex spinning process, including the initial state of yarn drawing-in process and the normal stable process, were obtained and analyzed. Spinning experiments, with the aid of scanning electron microscope, were adopted to verify the results of the numerical simulation. The results show that the state of airflow field is steady, which has less turbulence phenomenon at the beginning of the process, the air streamlines move orderly, the negative pressure produces a strong suction force facilitating drawing fiber bundle into nozzle successfully, and the numerical simulation speculates that the fibers cluster is better, and the wrapped effect is worse, which is consistent with the spinning experiments. The turbulence phenomenon in normal spinning process is more obvious, the trajectory of airflow is complex, the vortex and reflux phenomenon appear, the upstream airflow provides an extra tension for the yarn and may improve yarn strength, the numerical simulation speculates the fiber wrapped effect is better, and the yarn tenacity is predicted higher in numerical simulation results and verified by the spinning experiment results.

Key words: vortex spinning, spinning process, airflow field, numerical simulation

中图分类号: 

  • TS101.2

图1

喷嘴内气流体区域的三维数值模拟计算模型"

图2

喷嘴内气流场区域的网格划分"

图3

喷气涡流纺成纱机制图"

图4

纺纱过程初始状态时的气流场模拟结果"

图5

正常纺纱过程中的气流场模拟结果"

表1

成纱强度测试结果"

管纱
编号
成纱强度/(cN·tex-1)
初始纺纱过程值 正常纺纱过程值
1 8.26 10.59
2 7.32 10.61
3 7.43 9.96
4 7.21 10.67
5 7.34 10.53
平均值 7.51 10.47

图6

扫描电子显微镜下喷气涡流粘胶纱的结构(×500)"

[1] 景慎全, 章友鹤, 周建迪, 等. 喷气涡流纺产品的结构调整及其应用领域的拓展[J]. 纺织导报, 2017(11):68-72.
JING Shenquan, ZHANG Youhe, ZHOU Jiandi, et al. Adjusting product structure and expanding applications of air jet vortex-spun yarn[J]. China Textile Leader, 2017(11):68-72.
[2] 吴红玲, 蒋少军. 浅谈纺纱技术与发展[J]. 纺织器材, 2007(2):112-116.
WU Hongling, JIANG Shaojun. Brief discussion on spinning technology and development[J]. Textile Accessories, 2007(2):112-116.
[3] ORTLEK H G, NAIR F, KILIK R, et al. Effect of spindle diameter and spindle working period on the properties of 100% viscose MVS yarns[J]. Fibres & Textiles in Eastern Europe, 2008,16(3):17-20.
[4] 邢明杰. 喷气涡流纺成纱机理及其应用的研究[D]. 上海:东华大学, 2007: 30-65.
XING Mingjie. Study on the mechanism of air-jet spinning nozzle and its applications[D]. Shanghai: Donghua University, 2007: 30-65.
[5] RWEI S P, PAI H I, WANG I C. Fluid simulation of the airflow in interlacing nozzles[J]. Textile Research Journal, 2001,71(7):630-634.
doi: 10.1177/004051750107100711
[6] ZENG Y C, YU C W. Numerical simulation of air flow in the nozzle of an air-jet spinning machine[J]. Textile Research Journal, 2003,73(4):350-356.
doi: 10.1177/004051750307300413
[7] GUO H F, AN X L, YU Z S, et al. A numerical and experimental study on the effect of the cone angle of the spindle in Murata vortex spinning machine[J]. ASME Journal of Fluids Engineering, 2008,130(3):1039-1043.
[8] 韩晨晨, 程隆棣, 高卫东, 等. 基于有限元模型的喷气涡流纺纤维运动轨迹模拟[J]. 纺织学报, 2018,39(2):32-37.
HAN Chenchen, CHENG Longdi, GAO Weidong, et al. Simulation of fiber trajectory in jet vortex spinning based on finite element model[J]. Journal of Textile Research, 2018,39(2):32-37.
[9] 韩晨晨, 程隆棣, 高卫东, 等. 传统型与自捻型喷气涡流纺的对比[J]. 纺织学报, 2018,39(1):25-31.
HAN Chenchen, CHENG Longdi, GAO Weidong, et al. Comparative analysis of conventional and self twist jet vortex spinning[J]. Journal of Textile Research, 2018,39(1):25-31.
[10] 袁龙超, 李新荣, 郭臻, 等. 喷气涡流纺喷嘴结构对流场影响的研究进展[J]. 纺织学报, 2018,39(1):169-178.
YUAN Longchao, LI Xinrong, GUO Zhen, et al. Research progress in influence of vortex spinning nozzle on flow field[J]. Journal of Textile Research, 2018,39(1):169-178.
[11] HOWALDT M, YOGANATHAN A P. Laser-Doppler anemometry to study fluid transport in fibrous asse-mblies[J]. Textile Research Journal, 1983,53(9):544-551.
doi: 10.1177/004051758305300906
[12] MOORE E M, SHAMBAUGH R L. Analysis of isothermal annular jets comparison of computational fluid dynamics and experimental data[J]. Journal of Applied Polymer Science, 2004,94(3):909-922.
doi: 10.1002/(ISSN)1097-4628
[13] KRUTKA H M, SHAMBAUGH R L. Analysis of multiple jets in the Schwarz melt-blowing die using computational fluid dynamics[J]. Industrial & Engineering Chemistry Research, 2005,44(23):8922-8932.
[14] SUN Y, WANG X. Optimization of air flow field of the melt blowing slot die via numerical simulation and genetic algorithm[J]. Journal of Applied Polymer Science, 2010,115(3):1540-1545.
doi: 10.1002/app.v115:3
[15] SUN Y, WANG X. Optimal geometry design of the melt blowing slot die via the orthogonal array method and numerical simulation[J]. Journal of The Textile Institute, 2011,102(1):65-69.
doi: 10.1080/00405000903475805
[16] NYLAND G H, SKJETNE P, MIKKELSEN A, et al. Brownian dynamics simulation of needle chains[J]. J Chem Phys, 1996,105:1198-1207.
doi: 10.1063/1.471941
[17] LI M L, YU C W, SHANG S S. A numerical and experimental study on the effect of the orifice angle of vortex tube in vortex spinning machine[J]. The Journal of The Textile Institute, 2013,104(12):1303-1311.
doi: 10.1080/00405000.2013.799260
[18] BASAL G, OXENHAM W. Vortex spun yarn vs. air-jet spun yarn[J]. AUTEX Research Journal, 2003,3(3):96-101.
[1] 初曦, 邱华. 不同压强条件下环锭旋流喷嘴内部流场模拟[J]. 纺织学报, 2020, 41(09): 33-38.
[2] 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用 [J]. 纺织学报, 2020, 41(01): 139-144.
[3] 李斯湖, 沈敏, 白聪, 陈亮. 喷气织机辅助喷嘴结构参数对流场特性的影响[J]. 纺织学报, 2019, 40(11): 161-167.
[4] 陈旭, 吴炳洋, 范滢, 杨木生. 蓄热调温织物低温防护过程的数值模拟[J]. 纺织学报, 2019, 40(07): 163-168.
[5] 郑振荣, 智伟, 韩晨晨, 赵晓明, 裴晓园. 碳纤维织物在热流冲击下的热传递数值模拟[J]. 纺织学报, 2019, 40(06): 38-43.
[6] 曹海建, 陈红霞, 黄晓梅. 玻璃纤维/环氧树脂基夹芯材料侧压性能数值模拟[J]. 纺织学报, 2019, 40(05): 59-63.
[7] 何建, 裴泽光, 周健, 熊祥章, 吕海辰. 喷气涡流纺金属丝包芯纱成纱过程的在线观测与分析[J]. 纺织学报, 2019, 40(05): 136-143.
[8] 郭臻, 李新荣, 卜兆宁, 袁龙超. 喷气涡流纺中纤维运动的三维数值模拟[J]. 纺织学报, 2019, 40(05): 131-135.
[9] 广少博, 金玉珍, 祝晓晨. 喷气织机延伸喷嘴内气流场特性分析[J]. 纺织学报, 2019, 40(04): 135-139.
[10] 刘倩楠, 张涵, 刘新金, 苏旭中. 基于ABAQUS的三原组织机织物拉伸力学性能模拟[J]. 纺织学报, 2019, 40(04): 44-50.
[11] 林燕燕, 邹专勇, 陈玉香, 杨艳秋. 喷气涡流纺纱线热黏合增强工艺[J]. 纺织学报, 2019, 40(02): 58-62.
[12] 史倩倩, 高备, 林惠婷, 张玉泽, 汪军. 传统型与双喂给转杯纺纺纱器及其成纱性能对比[J]. 纺织学报, 2019, 40(02): 63-68.
[13] 姚江薇 邹专勇 闫琳琳 卫国 唐佩君. 喷气涡流纺纱线拉伸断裂强力预测模型构建与验证[J]. 纺织学报, 2018, 39(10): 32-37.
[14] 闫琳琳 邹专勇 卫国 程隆棣. 基于螺旋导引槽空心锭子的喷气涡流纺加捻腔流场模拟[J]. 纺织学报, 2018, 39(09): 139-145.
[15] 胥光申 孔双祥 刘洋 罗时杰. 基于Fluent的喷气织机辅助喷嘴综合性能[J]. 纺织学报, 2018, 39(08): 124-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!