纺织学报 ›› 2019, Vol. 40 ›› Issue (03): 65-70.doi: 10.13475/j.fzxb.20180306806

• 纺织工程 • 上一篇    下一篇

锯齿形三维机织间隔复合材料的弯曲性能

张雪飞, 王晶晶, 吕丽华(), 叶方   

  1. 大连工业大学, 辽宁 大连 116034
  • 收稿日期:2018-03-28 修回日期:2018-11-21 出版日期:2019-03-15 发布日期:2019-03-15
  • 通讯作者: 吕丽华
  • 作者简介:张雪飞(1992—),男,硕士生。主要研究方向为三维纺织结构与功能复合材料。
  • 基金资助:
    辽宁省高等学校产业技术研究院重大项目(6999180102);辽宁省科技创新团队项目(LT2017017)

Bending properties of zigzag 3-D woven spacer composites

ZHANG Xuefei, WANG Jingjing, LÜ Lihua(), YE Fang   

  1. Dalian Polytechnic University, Dalian, Liaoning 116034, China
  • Received:2018-03-28 Revised:2018-11-21 Online:2019-03-15 Published:2019-03-15
  • Contact: Lü Lihua

摘要:

为解决层合间隔复合材料易开裂和整体性差的问题,采用绿色环保的玄武岩低捻长丝作为经、纬纱,合理设计经向截面图和组织图,并在普通织机上织造3种不同间隔高度的锯齿形三维机织间隔织物。以所织得的锯齿形三维机织间隔织物作为增强材料,环氧乙烯基树脂作为基体,利用真空辅助成型工艺,制备锯齿形三维机织间隔复合材料,同时对三维机织间隔复合材料进行三点弯曲性能测试,得到弯曲载荷-位移曲线、能量吸收图和破坏模式。结果表明:复合材料的纬向是主要承力方向;组织循环个数越多的材料表现出更好的弯曲性能;在一定间隔高度范围内,间隔高度越高的锯齿形三维机织间隔织物承受的弯曲载荷和吸收的能量也越高;锯齿形三维机织间隔复合材料的破坏模式是材料上表层受压,下表层受拉,而连接层受压;在作用力下材料只是出现明显的变形,但并未出现材料整体的破坏。

关键词: 三维机织间隔复合材料, 玄武岩纤维, 弯曲性能, 真空辅助成型工艺

Abstract:

For solving the easily-cracking and poor-integrated problem of laminated composites, the zigzag 3-D woven spacer fabric with the basalt fiber filaments tows as warp and weft yarns were fabricated on the common loom by reasonable design, which had three different spacer heights. The 3-D woven basalt fiber spacer composites were obtained from epoxy vinyl resin as matrix and 3-D woven basalt fiber spacer fabric as reinforced material by vacuum assisted resin transfer molding process. Then, the three-point bending property of 3-D woven basalt fiber spacer composite was tested by using RGY-5 microcomputer to control electronic universal machine, and the load-displacement curves, absorption energy-displacement histogram and failure model were obtained. Results show that the main bearing direction is the weft of material. The more numbers of organization will have better bending property at the rang of certain heights, the values of the load and absoption energy are bigger with the higher spacer height. The failure model of zigzag shaped 3-D woven spacer composite is that the upper surface of the material is under pressure, the bottom surface is under tension, and the connecting layer is under pressure. Under the bending load, the material are not integrally destructed, but obviously deforms.

Key words: 3-D woven spacer composite, basalt fiber, bending property, vacuum assisted resin transfer molding process

中图分类号: 

  • TS101.2

图1

锯齿形三维间隔织物经向截面示意图"

图2

锯齿形三维间隔织物组织图"

图3

VARTM系统"

图4

弯曲装置示意图 r为支座圆角半径;R为加载上压头半径。"

图5

经、纬向锯齿形三维间隔复合材料载荷-位移曲线"

图6

经向试样材料示意图"

图7

纬向试样示意图"

图8

单、双锯齿形三维间隔复合材料载荷-位移曲线"

表1

弯曲强度测试结果"

H/cm 方向 试样平均数/个 方差 强度/MPa
1.0 415.7 21.1 5 668.6
1.7 74.0 10.1 153.6
1.7 449.3 12.1 1 166.0
2.4 499.3 24.9 433.2

图9

不同高度三维间隔复合材料载荷-位移曲线"

图10

锯齿形三维机织间隔复合材料三点弯曲测试过程"

图11

锯齿形三维机织间隔复合材料弯曲破坏形态"

[1] 沈浩清, 曹海建, 黄晓梅, 等. 三维间隔织物复合材料弯曲性能研究[J]. 产业用纺织品, 2016,34(11):6-9.
SHEN Haoqing, CAO Haijian, HUANG Xiaomei, et al. Study on bending properties of three-dimensional spacer fabric composites[J]. Technical Textiles, 2016,34(11):6-9.
[2] MENTA V G K, VUPPALAPATI R R, CHANDDRASHEKHARA K, et al. Manufacturing and mechanical performance evaluation of resin-infused honeycomb composites[J]. Journal of Reinforced Plastics and Composites, 2012,31(6):415-423.
doi: 10.1177/0731684412439792
[3] 李嘉禄, 杨红娜, 寇长河. 三维编织复合材料的疲劳性能[J]. 复合材料学报, 2005,22(4):172-176.
LI Jialu, YANG Hongna, KOU Changhe. Fatigue properties of three dimensional braiding composites[J]. Acta Materiae Compositae Sinica, 2005,22(4):172-176.
[4] LI M, WANG S, ZHANG Z, et al. Effect of structure on the mechanical behaviors of three-dimensional spacer fabric composites[J]. Applied Composite Materials, 2009,16(1):1-14
doi: 10.1007/s10443-008-9072-4
[5] SHANNA M, GARY S. Three-dimensionally knit spacer fabrics: a review of production techniques and applications[J]. Journal of Textile and Apparel, Technology and Management, 2005,4(4):1-25.
[6] PEREIRA S, ANAND S C, RAJENDRAN S, et al. A study of the structure and properties of novel fabrics for knee braces[J]. Journal of Industrial Textiles, 2007,36(4):279-300.
doi: 10.1177/1528083707072357
[7] VASILE S, LANGENHOVE L V, MEULEMESTEER S D. Effect of production process parameters on different properties of nonwoven spacer produced on a 3D web linker[J]. Fibres & Textiles in Eastern Europe, 2006,14(4):68.
[8] RUSSELL S J, POURMOHAMMADI A, MAO N, et al. Nonwoven spacer fabrics: US7814625[P]. 2010-05-08.
[9] 陈思. 经编间隔织物增强聚氨酯复合材料吸能性能[D]. 上海:东华大学, 2015: 1-36.
CHEN Si. Energy absorption properties of warp-knitted spacer fabrics reinforced polyurethane composites[D]. Shanghai: Donghua University, 2015: 1-36.
[10] 李晓英, 蒋高明, 马丕波, 等. 3D横编间隔织物的编织工艺及其性能[J]. 纺织学报, 2016,37(7):66-70.
LI Xiaoying, JIANG Gaoming, MA Pibo, et al. Knitting processes and properties of three- dimensional computer flat-knitted spacer fabrics[J]. Journal of Textile Research, 2016,37(7):66-70.
[11] 李嘉禄. 3D编织技术和3D编织复合材料[J]. 新材料产业, 2010(1):46-49.
LI Jialu. 3D braiding technology and 3D braided composites[J]. Advanced Materials Industry, 2010(1):46-49.
[12] MOUNTASIR A, HOFFMANN G, CHERIF C. Development of weaving technology for manufacturing three-dimensional spacer fabrics with high-performance yarns for thermoplastic composite applications: an analysis of two-dimensional mechanical properties[J]. Textile Research Journal, 2011,81(13):1354-1366.
doi: 10.1177/0040517511402125
[13] 张敏, 吴刚, 蒋语楣, 等. 连续玄武岩纤维增强复合材料力学性能试验研究[J]. 高科技纤维与应用, 2007,32(2):15-21.
ZHANG Min, WU Gang, JIANG Yumei. Experimental research on mechanical properties of continuous basalt fiber reinforced composites[J]. Hi-Tech Fiber and Application, 2007,32(2):15-21.
[14] LÜ L, ZHANG X, YAN S, et al. Bending properties of T-Shaped 3-D integrated woven composites: experiment and FEM simulation[J]. Journal of Fiber Science and Technology, 2017,73(7):170-176
doi: 10.2115/fiberst.2017-0022
[15] LÜ L, ZHANG X, LIU G, et al. Mechanical properties of 3D woven basalt fiber composite materials: experiment and FEM simulation[J]. Journal of Fiber Science and Technology, 2016,72(1):33-39.
[1] 刘军, 刘奎, 宁博, 孙宝忠, 张威. 三维编织复合材料T型梁的低温场弯曲性能[J]. 纺织学报, 2019, 40(12): 57-62.
[2] 吕丽华 黄耀丽 崔婧蕊. 蜂窝状三维整体机织复合材料的弯曲性能及其有限元模拟[J]. 纺织学报, 2017, 38(11): 56-60.
[3] 蔡冯杰 祝成炎 田伟 吕智宁 申晓. 3D打印成型的玻璃纤维增强聚乳酸基复合材料[J]. 纺织学报, 2017, 38(10): 13-18.
[4] 高雄 胡侨乐 马颜雪 张琦 魏毅 邱夷平. 不同结构厚截面三维机织碳纤维复合材料的弯曲性能对比[J]. 纺织学报, 2017, 38(09): 66-71.
[5] 吕丽华 张雪飞 闫淑娟 钱永芳 叶方 赵玉萍. T字型三维机织物设计及其复合材料弯曲性能[J]. 纺织学报, 2016, 37(12): 49-54.
[6] 吴巧英 胡滢 吴春胜 劳世慧. 不同织物弯曲性能测试仪测试结果的比较[J]. 纺织学报, 2015, 36(07): 126-130.
[7] 于陈陈 瞿畅 邓捷 代艾波 张小萍. T形截面三维编织复合材料细观结构分析及弯曲性能预测[J]. 纺织学报, 2015, 36(06): 42-49.
[8] 孙淑瑶 纪峰 王岩 邱夷平 谢剑飞 娄琳. 小应力下织物拉伸和弯曲性能对其湿态贴体性的影响[J]. 纺织学报, 2014, 35(8): 27-0.
[9] 余鹏程 于斌 韩建 徐国平 丁新波. 聚苯硫醚纤维对其复合滤料结构及力学性能影响[J]. 纺织学报, 2013, 34(7): 5-9.
[10] 刘成霞 韩永华 张才前. 基于图像处理的织物弯曲性能测试方法[J]. 纺织学报, 2013, 34(7): 52-56.
[11] 杨允出 刘旖婧 丁笑君. 缝制条件下织物的弯曲和悬垂性能[J]. 纺织学报, 2013, 34(7): 95-99.
[12] 何艳芬 陈雪善. 玄武岩纤维土工格栅与沥青黏结性[J]. 纺织学报, 2013, 34(5): 21-24.
[13] 徐艳华 袁新林. 玄武岩纤维机织针织复合织物增强复合材料的弯曲性能[J]. 纺织学报, 2013, 34(1): 36-39.
[14] 李荣全, 王府梅, 张丽芝. 低温环境下PTT与锦纶织物的手感比较[J]. 纺织学报, 2012, 33(7): 53-57.
[15] 徐艳华;袁新林;胡红. 玄武岩纤维机织针织复合结构增强复合材料的拉伸性能[J]. 纺织学报, 2011, 32(2): 48-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!