纺织学报 ›› 2019, Vol. 40 ›› Issue (03): 54-58.doi: 10.13475/j.fzxb.20180506306
孙菲1, 李婷婷1, 林佳弘1,2,3,4, 吴华铃2, 楼静文1,3,4,5()
SUN Fei1, LI Tingting1, LIN Jiahorng1,2,3,4, WU Hualing2, LOU Chingwen1,3,4,5()
摘要:
为提高鞋中底基材的抗穿刺性与柔韧性,降低成本,通过玄武岩基机织物增强和热压加固的工艺制备抗穿刺鞋中底基材,分析了低熔点聚酯纤维比例对鞋中底基材拉伸、顶破和静态穿刺头A、B、C性能的影响。结果表明:随着低熔点聚酯纤维(LMPET)含量的增加,抗穿刺强力先增强后逐渐减弱;当低熔点纤维含量为30%时,鞋中底基材的拉伸载荷为793.6 N(未热压)和759.9 N(热压),顶破载荷为445.5 N(未热压)和767.9 N(热压);鞋中底基材对不同形状的穿刺头的平均静态抗穿刺力分别为329.0 N(未热压)和392.4 N(热压);热黏合加固对顶破和抗穿刺性能的提升效果显著。
中图分类号:
[1] | 靳向煜, 姚瑾. 鞋用非织造布合成革的结构与性能[J]. 纺织学报, 1991,12(5):18-21. |
JIN Xiangyu, YAO Jin. Construction and properties of nonwoven artificial leather for shoes making[J]. Journal of Textile Research, 1991,12(5):18-21. | |
[2] | JR J B M, WETZEL E D, HOSUR M V, et al. Stab and puncture characterization of thermoplastic-impregnated aramid fabrics[J]. International Journal of Impact Engineering, 2009,36(9):1095-1105. |
[3] | NIU H, JIAO X, WANG R, et al. Direct manufacturing of flax fibers reinforced low melting point PET composites from nonwoven mats[J]. Fibers & Polymers, 2010,11(2):218-222. |
[4] | LI T T, LOU Chingwen, LIN Meichen, et al. Processing technique and performance evaluation of high-modulus organic/inorganic puncture-resisting composites[J]. Fibres & Textiles in Eastern Europe, 2014,22(6):75-80. |
[5] | LATKO P, KOZERA R, SALINIER A, et al. Non-woven veils manufactured from polyamides doped with carbon nanotubes[J]. Fibres & Textiles in Eastern Europe, 2013,21(6):45-49. |
[6] | XU J Z, YOU B, WANG B G. Curing process simulation of fiberglass-reinforced plastic (FRP) pipes[J]. Materials & Manufacturing Processes, 2009,24(6):657-666. |
[7] | POORZEINOLABEDIN M, GOLZAR M. Improving the woven glass/epoxy composite for automobile exterior body cover[J]. Materials & Manufacturing Processes, 2011,26(4):562-566. |
[8] | LIN C C, LOU C W, HSING W H, et al. Evaluation of manufacturing technology and characterization of composite fabric for stab resistant materials[J]. Advanced Materials Research, 2008(55-57):429-432. |
[9] | TIEN D T, KIM J S, YOU H. Stab-resistant property of the fabrics woven with the aramid/cotton core-spun yarns[J]. Fibers & Polymers, 2010,11(3):500-506. |
[10] | LOU C W, LIN C C, HSING W H, et al. Processing technique and property evaluation of stab-resistant composite fabrics[J]. Advanced Materials Research, 2011(239):1990-1993. |
[11] | YANG Y, PONTING M, THOMPSON G, et al. Puncture deformation and fracture mechanism of oriented polymers[J]. Journal of Applied Polymer Science, 2012,124(3):2524-2536. |
[12] | KIM H, NAM I. Stab resisting behavior of polymeric resin reinforced p-aramid fabrics[J]. Journal of Applied Polymer Science, 2011,123(5):2733-2742. |
[13] | RAWAL A, ANANDJIWALA R D. Relationship between process parameters and properties of multifunctional needlepunched geotextiles[J]. Journal of Industrial Textiles, 2006,35(4):271-285. |
[14] | WANG Rui, LI Tingting, LOU Chingwen, et al. Effect of process parameters on puncture resistance of composites by needle punching and thermal bonding techniques[J]. Advanced Manufacturing Processes, 2013,28(9):1029-1035. |
[15] | LI T T, ZHANG X, PENG H, et al. Thermally bonded PET-basalt sandwich composites for heat pipeline protection: preparation, stab resisting, and thermal-insulating properties[J]. Applied Sciences, 2018,8(4):510. |
[16] | 邓炳耀, 晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004,25(2):103-105. |
DENG Bingyao, YAN Xiong. The hot-press conditions on mechanical properties of aramid nonwoven fabric[J]. Journal of Textile Research, 2004,25(2):103-105. | |
[17] | LIN J H, LIN C C, CHEN J M, et al. Study on the processing technology and mechanical properties of nonwoven fabric composited by recycled PP selvedges[J]. Advanced Materials Research, 2011,287(6):85-90. |
[18] | LOU C W, LIN C C, HUANG C C, et al. Manufacturing technique of stab-resistant laminated composite nonwoven fabrics[J]. Advanced Materials Research, 2011(239):3342-3345. |
[19] | LI T T, WANG R, LOU C W, et al. Evaluation of high-modulus, puncture-resistance composite nonwoven fabrics by response surface methodology[J]. Journal of Industrial Textiles, 2013,43(2):247-263. |
[20] | LOU C W, LIN C W, LIN C C, et al. The effects of thermal consolidation methods on PET nonwoven composites for thermal insulation use[J]. Advanced Materials Research, 2008,55(2):405-408. |
[21] | LIN C M, LOU C W, LIN J H. Manufacturing and properties of fire-retardant and thermal insulation nonwoven fabrics with FR-polyester hollow fibers[J]. Textile Research Journal, 2009,79(11):993-1000. |
[22] | 崔毅华. 玄武岩连续纤维的基本特性[J]. 纺织学报, 2005,26(5):120-121. |
CUI Yihua. Primary properties of basalt continuous filament[J]. Journal of Textile Research, 2005,26(5):120-121. | |
[23] | 李婷婷. 基于应力波传递的多重加固复合织物的防刺结构设计[C]//第五届海峡两岸三地纺织学术论坛论文集 香港:香港理工大学, 2014: 261-265. |
LI Tingting. Puncture-resisting structure design of multiple reinforced composite fabric based on stress wave transmission[C]//The Fifth Cross-Strait Textile Academic Forum Proceedings. HongKong: The HongKong Polytechnic University, 2014: 261-265. | |
[24] |
LI T T, SUN F, LIU X, et al. Preparation and mechanical property evaluations of puncture-resistant insoles composites reinforced by high-modulus filament and thermal bonding[J]. Fibers and Polymers, 2018,19(6):1309-1317.
doi: 10.1007/s12221-018-1116-2 |
[25] |
SUN B, WANG Y, WANG P, et al. Investigations of puncture behaviors of woven fabrics from finite element analyses and experimental tests[J]. Textile Research Journal, 2011,81(10):992-1007.
doi: 10.1177/0040517510395999 |
[26] | LI T T, WANG R, LOU C W, et al. Modeling and optimization of dynamic puncture behaviors for flexible inter-/intra- reinforced compound fabrics[J]. Fibers & Polymers, 2016,17(3):469-476. |
[1] | 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7. |
[2] | 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14. |
[3] | 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31. |
[4] | 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14. |
[5] | 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173. |
[6] | 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14. |
[7] | 岳程飞, 丁长坤, 李璐, 程博闻 . 碳化二亚胺/ 羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41(03): 1-7. |
[8] | 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105. |
[9] | 崔一帆, 侯巍, 周千熙, 闫俊, 路艳华, 何婷婷. 丝胶温敏凝胶对棉织物性能的影响[J]. 纺织学报, 2019, 40(12): 74-78. |
[10] | 张娇, 高雪峰, 王玉周, 刘海辉, 张兴祥. 聚酰胺66/氨基化多壁碳纳米管纤维制备及其性能[J]. 纺织学报, 2019, 40(11): 1-8. |
[11] | 杨帆, 刘俊华, 边昂挺, 王燕萍, 钱琦渊, 倪建华, 夏于旻, 何勇, 王依民. 热处理对热致液晶聚芳酯纤维结构与性能的影响[J]. 纺织学报, 2019, 40(11): 9-12. |
[12] | 吴利伟, 王伟, 林佳弘, 姜茜. 芳纶/超高分子量聚乙烯织物增强聚氨酯夹芯复合材料制备及其力学性能[J]. 纺织学报, 2019, 40(07): 64-70. |
[13] | 刘淑萍, 李亮, 刘让同, 崔世忠, 王艳婷. 羧甲基纤维素钠改性角蛋白膜的结构与性能[J]. 纺织学报, 2019, 40(06): 14-19. |
[14] | 刘金鑫, 张海峰, 张星, 黄晨, 郑晓冰, 靳向煜. 多级拉伸与热定型对聚乙烯/聚丙烯双组分纤维结构和性能的影响[J]. 纺织学报, 2019, 40(05): 24-29. |
[15] | 莫达杰, 李旭明, 许增慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸阻燃纤维的制备及其性能[J]. 纺织学报, 2019, 40(05): 12-17. |
|