纺织学报 ›› 2019, Vol. 40 ›› Issue (03): 54-58.doi: 10.13475/j.fzxb.20180506306

• 纺织工程 • 上一篇    下一篇

玄武岩机织增强热黏合抗穿刺鞋中底基材的力学性能

孙菲1, 李婷婷1, 林佳弘1,2,3,4, 吴华铃2, 楼静文1,3,4,5()   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.逢甲大学 纤维与复合材料学系, 台湾 台中 40724
    3.闽江学院 海洋学院, 福建 福州 350108
    4.福建省新型功能性纺织纤维及材料重点实验室(闽江学院),福建 福州 350108
    5.亚洲大学 生物信息与医学工程学系, 台湾 台中 41354
  • 收稿日期:2018-05-25 修回日期:2018-11-23 出版日期:2019-03-15 发布日期:2019-03-15
  • 通讯作者: 楼静文
  • 作者简介:孙菲(1992—),女,博士生。主要研究方向为纺织复合材料的结构及性能。
  • 基金资助:
    国家自然科学基金项目(51503145);国家自然科学基金项目(511702187);天津市自然科学基金项目(18JCQNJC03400);福建省自然科学基金项目(2018J01505);福建省自然科学基金项目(22018J01504);天津市高等学校创新团队项目(TD13-5043);绿色染整福建省高校工程研究中心开放基金项目(2017001A);绿色染整福建省高校工程研究中心开放基金项目(2017001B);绿色染整福建省高校工程研究中心开放基金项目(2017002B)

Mechanical properties of basalt plain fabric reinforced hot bonded puncture-resistant insoles composites

SUN Fei1, LI Tingting1, LIN Jiahorng1,2,3,4, WU Hualing2, LOU Chingwen1,3,4,5()   

  1. 1. School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
    2. Department of Chemistry and Materials, Feng Chia University, Taichung, Taiwan 40724, China
    3. Ocean College, Minjiang University, Fuzhou, Fujian 350108, China
    4. Fujian Key Laboratory of Novel Functional Fibers and Materials (Minjiang University), Fuzhou, Fujian 350108, China
    5. Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan 41354, China
  • Received:2018-05-25 Revised:2018-11-23 Online:2019-03-15 Published:2019-03-15
  • Contact: LOU Chingwen

摘要:

为提高鞋中底基材的抗穿刺性与柔韧性,降低成本,通过玄武岩基机织物增强和热压加固的工艺制备抗穿刺鞋中底基材,分析了低熔点聚酯纤维比例对鞋中底基材拉伸、顶破和静态穿刺头A、B、C性能的影响。结果表明:随着低熔点聚酯纤维(LMPET)含量的增加,抗穿刺强力先增强后逐渐减弱;当低熔点纤维含量为30%时,鞋中底基材的拉伸载荷为793.6 N(未热压)和759.9 N(热压),顶破载荷为445.5 N(未热压)和767.9 N(热压);鞋中底基材对不同形状的穿刺头的平均静态抗穿刺力分别为329.0 N(未热压)和392.4 N(热压);热黏合加固对顶破和抗穿刺性能的提升效果显著。

关键词: 鞋中底基材, 抗穿刺, 玄武岩平纹织物, 安全鞋, 力学性能

Abstract:

In order to improve puncture-resistance and flexibility and reduce costs of insoles composites, basalt plain fabric and hot bonding were adopted to reinforce the puncture resistance stability of the insole composite. The influences of the amount of low-melting-point polyester fibers properties of tensioning, bursting and static puncturing of flat-head(A), spherical-head(B), and pointed-head(C)probes were analyzed. The result shows that, with the increasing of low-melting-point polyester fibers, the puncture resistance firstly increases then decreases gradually. When the low-melting-point fiber content is 30%, the tensile strength of the insoles material is 793.6 N under non-hot pressing (NHP) and 759.9 N under hot pressing (HP), and the bursting strength is 445.5 N (NHP) and 767.9 N (HP). The average static resistance of the insoles to different shapes is 329.0 N (NHP) and 392.4 N (HP).The effect of hot bonding reinforcement on bursting and puncture resistance is significant.

Key words: insole composite, puncture resistance, basalt plain fabric, safety shoes, mechanical property

中图分类号: 

  • TS179

图1

复合鞋中底基材的结构示意图"

图2

静态穿刺3种穿刺头示意图"

图3

低熔点聚酯纤维含量对未热压玄武岩增强鞋中底基材拉伸强力的影响"

图4

低熔点聚酯纤维含量对热压玄武岩增强复合鞋中底基材拉伸强力的影响"

图5

低熔点聚酯纤维含量对玄武岩增强复合鞋中底基材顶破强力的影响"

图6

低熔点聚酯纤维含量对玄武岩增强复合鞋中底基材平头静态穿刺强力的影响"

图7

低熔点聚酯纤维含量对玄武岩增强复合鞋中底基材小圆头静态穿刺强力的影响"

图8

低熔点聚酯纤维含量对玄武岩增强复合鞋中底基材尖圆头静态穿刺强力的影响"

[1] 靳向煜, 姚瑾. 鞋用非织造布合成革的结构与性能[J]. 纺织学报, 1991,12(5):18-21.
JIN Xiangyu, YAO Jin. Construction and properties of nonwoven artificial leather for shoes making[J]. Journal of Textile Research, 1991,12(5):18-21.
[2] JR J B M, WETZEL E D, HOSUR M V, et al. Stab and puncture characterization of thermoplastic-impregnated aramid fabrics[J]. International Journal of Impact Engineering, 2009,36(9):1095-1105.
[3] NIU H, JIAO X, WANG R, et al. Direct manufacturing of flax fibers reinforced low melting point PET composites from nonwoven mats[J]. Fibers & Polymers, 2010,11(2):218-222.
[4] LI T T, LOU Chingwen, LIN Meichen, et al. Processing technique and performance evaluation of high-modulus organic/inorganic puncture-resisting composites[J]. Fibres & Textiles in Eastern Europe, 2014,22(6):75-80.
[5] LATKO P, KOZERA R, SALINIER A, et al. Non-woven veils manufactured from polyamides doped with carbon nanotubes[J]. Fibres & Textiles in Eastern Europe, 2013,21(6):45-49.
[6] XU J Z, YOU B, WANG B G. Curing process simulation of fiberglass-reinforced plastic (FRP) pipes[J]. Materials & Manufacturing Processes, 2009,24(6):657-666.
[7] POORZEINOLABEDIN M, GOLZAR M. Improving the woven glass/epoxy composite for automobile exterior body cover[J]. Materials & Manufacturing Processes, 2011,26(4):562-566.
[8] LIN C C, LOU C W, HSING W H, et al. Evaluation of manufacturing technology and characterization of composite fabric for stab resistant materials[J]. Advanced Materials Research, 2008(55-57):429-432.
[9] TIEN D T, KIM J S, YOU H. Stab-resistant property of the fabrics woven with the aramid/cotton core-spun yarns[J]. Fibers & Polymers, 2010,11(3):500-506.
[10] LOU C W, LIN C C, HSING W H, et al. Processing technique and property evaluation of stab-resistant composite fabrics[J]. Advanced Materials Research, 2011(239):1990-1993.
[11] YANG Y, PONTING M, THOMPSON G, et al. Puncture deformation and fracture mechanism of oriented polymers[J]. Journal of Applied Polymer Science, 2012,124(3):2524-2536.
[12] KIM H, NAM I. Stab resisting behavior of polymeric resin reinforced p-aramid fabrics[J]. Journal of Applied Polymer Science, 2011,123(5):2733-2742.
[13] RAWAL A, ANANDJIWALA R D. Relationship between process parameters and properties of multifunctional needlepunched geotextiles[J]. Journal of Industrial Textiles, 2006,35(4):271-285.
[14] WANG Rui, LI Tingting, LOU Chingwen, et al. Effect of process parameters on puncture resistance of composites by needle punching and thermal bonding techniques[J]. Advanced Manufacturing Processes, 2013,28(9):1029-1035.
[15] LI T T, ZHANG X, PENG H, et al. Thermally bonded PET-basalt sandwich composites for heat pipeline protection: preparation, stab resisting, and thermal-insulating properties[J]. Applied Sciences, 2018,8(4):510.
[16] 邓炳耀, 晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004,25(2):103-105.
DENG Bingyao, YAN Xiong. The hot-press conditions on mechanical properties of aramid nonwoven fabric[J]. Journal of Textile Research, 2004,25(2):103-105.
[17] LIN J H, LIN C C, CHEN J M, et al. Study on the processing technology and mechanical properties of nonwoven fabric composited by recycled PP selvedges[J]. Advanced Materials Research, 2011,287(6):85-90.
[18] LOU C W, LIN C C, HUANG C C, et al. Manufacturing technique of stab-resistant laminated composite nonwoven fabrics[J]. Advanced Materials Research, 2011(239):3342-3345.
[19] LI T T, WANG R, LOU C W, et al. Evaluation of high-modulus, puncture-resistance composite nonwoven fabrics by response surface methodology[J]. Journal of Industrial Textiles, 2013,43(2):247-263.
[20] LOU C W, LIN C W, LIN C C, et al. The effects of thermal consolidation methods on PET nonwoven composites for thermal insulation use[J]. Advanced Materials Research, 2008,55(2):405-408.
[21] LIN C M, LOU C W, LIN J H. Manufacturing and properties of fire-retardant and thermal insulation nonwoven fabrics with FR-polyester hollow fibers[J]. Textile Research Journal, 2009,79(11):993-1000.
[22] 崔毅华. 玄武岩连续纤维的基本特性[J]. 纺织学报, 2005,26(5):120-121.
CUI Yihua. Primary properties of basalt continuous filament[J]. Journal of Textile Research, 2005,26(5):120-121.
[23] 李婷婷. 基于应力波传递的多重加固复合织物的防刺结构设计[C]//第五届海峡两岸三地纺织学术论坛论文集 香港:香港理工大学, 2014: 261-265.
LI Tingting. Puncture-resisting structure design of multiple reinforced composite fabric based on stress wave transmission[C]//The Fifth Cross-Strait Textile Academic Forum Proceedings. HongKong: The HongKong Polytechnic University, 2014: 261-265.
[24] LI T T, SUN F, LIU X, et al. Preparation and mechanical property evaluations of puncture-resistant insoles composites reinforced by high-modulus filament and thermal bonding[J]. Fibers and Polymers, 2018,19(6):1309-1317.
doi: 10.1007/s12221-018-1116-2
[25] SUN B, WANG Y, WANG P, et al. Investigations of puncture behaviors of woven fabrics from finite element analyses and experimental tests[J]. Textile Research Journal, 2011,81(10):992-1007.
doi: 10.1177/0040517510395999
[26] LI T T, WANG R, LOU C W, et al. Modeling and optimization of dynamic puncture behaviors for flexible inter-/intra- reinforced compound fabrics[J]. Fibers & Polymers, 2016,17(3):469-476.
[1] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[2] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[3] 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31.
[4] 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14.
[5] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[6] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[7] 岳程飞, 丁长坤, 李璐, 程博闻 . 碳化二亚胺/ 羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41(03): 1-7.
[8] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[9] 崔一帆, 侯巍, 周千熙, 闫俊, 路艳华, 何婷婷. 丝胶温敏凝胶对棉织物性能的影响[J]. 纺织学报, 2019, 40(12): 74-78.
[10] 张娇, 高雪峰, 王玉周, 刘海辉, 张兴祥. 聚酰胺66/氨基化多壁碳纳米管纤维制备及其性能[J]. 纺织学报, 2019, 40(11): 1-8.
[11] 杨帆, 刘俊华, 边昂挺, 王燕萍, 钱琦渊, 倪建华, 夏于旻, 何勇, 王依民. 热处理对热致液晶聚芳酯纤维结构与性能的影响[J]. 纺织学报, 2019, 40(11): 9-12.
[12] 吴利伟, 王伟, 林佳弘, 姜茜. 芳纶/超高分子量聚乙烯织物增强聚氨酯夹芯复合材料制备及其力学性能[J]. 纺织学报, 2019, 40(07): 64-70.
[13] 刘淑萍, 李亮, 刘让同, 崔世忠, 王艳婷. 羧甲基纤维素钠改性角蛋白膜的结构与性能[J]. 纺织学报, 2019, 40(06): 14-19.
[14] 刘金鑫, 张海峰, 张星, 黄晨, 郑晓冰, 靳向煜. 多级拉伸与热定型对聚乙烯/聚丙烯双组分纤维结构和性能的影响[J]. 纺织学报, 2019, 40(05): 24-29.
[15] 莫达杰, 李旭明, 许增慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸阻燃纤维的制备及其性能[J]. 纺织学报, 2019, 40(05): 12-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!