纺织学报 ›› 2019, Vol. 40 ›› Issue (03): 13-19.doi: 10.13475/j.fzxb.20180306307

• 纤维材料 • 上一篇    下一篇

聚丙烯腈/聚砜酰胺复合纳米纱线的制备与表征

靳世鑫1, 刘书华2, 刘岩3(), 郑元生1, 辛斌杰1   

  1. 1.上海工程技术大学 服装学院, 上海 201620
    2.上海工程技术大学 科研处, 上海 201620
    3.上海工程技术大学 化学化工学院, 上海 201620
  • 收稿日期:2018-03-26 修回日期:2018-07-24 出版日期:2019-03-15 发布日期:2019-03-15
  • 通讯作者: 刘岩
  • 作者简介:靳世鑫(1991—),男,硕士生。主要研究方向为功能性静电纺纳米纤维制备。
  • 基金资助:
    国家自然科学基金项目(11702169);上海工程技术大学人才计划(E3-05071703046)

Preparation and characterization of polyacrylonitrile/polysulfonamide composite nanoyarns

JIN Shixin1, LIU Shuhua2, LIU Yan3(), ZHENG Yuansheng1, XIN Binjie1   

  1. 1. School of Fashion Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
    2. Research Department, Shanghai University of Engineering Science, Shanghai 201620, China
    3. College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2018-03-26 Revised:2018-07-24 Online:2019-03-15 Published:2019-03-15
  • Contact: LIU Yan

摘要:

针对聚丙烯腈(PAN)耐热性能较差,聚砜酰胺(PSA)阻燃但染色性能较差等问题,在保持纺丝液质量分数、纺丝接收距离等条件不变的前提下,利用自制旋转式动态静电纺纱机,分别采用不同纺丝电压和不同接收器转速制备一系列聚丙烯腈/聚砜酰胺复合纳米纱线。借助扫描电子显微镜、单纱强力机、毛细管效应测定仪、傅里叶变换红外光谱仪和热重分析仪对复合纳米纱线的结构和性能进行表征。结果表明:纺丝电压和接收器转速对纳米纱线的形态影响比较明显,并进一步影响纱线的力学性能;当纺丝电压为25 kV、接收器转速为40 r/min时,纱线具有较好的外观形貌、力学性能和热性能;当接收器转速为60 r/min,纺丝电压为30 kV时,纳米纱线的芯吸性能最好。

关键词: 聚丙烯腈, 聚砜酰胺, 静电纺丝, 纳米纱线

Abstract:

Aiming at the poor heat resistance of polyacrylonitrile (PAN), excellent heat resistance and poor dyeing property of polysulfone amide (PSA), a series of nanoyarns were prepared at different spinning voltages and collector rotating speeds by using a self-made dynamic electrospinning machine, with the concentration of spinning solution and the receiving distance kept constant. The structure and properties of the composite nanoyarns were studied by using scanning electron microscope, single yarn strength tester, capillary effect tester, Fourier transform infrared spectrometer and thermogravimetric analyzer. The experimental results show that the morphology of nanoyarns are significantly affected by spinning voltages and the collector rotating speeds. In addition, the mechanical properties of nanoyarns are also affected. It is found that the nanoyarns could achieve a better performance in morphology, strength and heat resistance at spinning voltage of 25 kV and collector rotating speed of 40 r/min. The nanoyarns show a better wicking performance at collector rotating speed of 60 r/min and spinning voltage of 30 kV.

Key words: polyacrylonitrile, polysulfonamide, electrospinning, nanoyarn

中图分类号: 

  • TQ342.79

图1

旋转式动态静电纺纱机"

图2

不同成分纱线的扫描电镜照片(×70)"

图3

不同电压下制备的纳米纱线的扫描电镜照片(×70)"

图4

不同转速下制备的纳米纱线的扫描电镜照片(×70)"

图5

不同成分纳米纱线的拉伸曲线图"

图6

不同电压下纳米纱线的拉伸曲线图"

图7

不同转速下纳米纱线的拉伸曲线图"

图8

不同组分纳米纱线的芯吸性能 注:每个图中自左向右分别为PAN、PAN/PSA和PSA纱线。"

图9

不同电压下纳米纱线的芯吸高度 注:每个图中纺丝电压自左向右分别为20、25和30 kV。"

图10

不同接收器转速下纳米纱线的芯吸高度 注:每个图中接收器转速自左向右分别为20、40 和60 r/min。"

图11

不同成分纳米纱线的红外光谱图"

图12

不同成分纳米纱线的TG曲线"

图13

不同纺丝电压下纳米纱线的TG曲线"

图14

不同接收器转速下纳米纱线的TG曲线"

[1] FONG H, CHUN I, RENEKER D H. Beaded nanofibers formed during electrospinning[J]. Polymer, 1999,40(16):4585-4592.
doi: 10.1016/S0032-3861(99)00068-3
[2] RENEKER D H, YARIN A L. Electrospinning jets and polymer nanofibers[J]. Polymer, 2008,49(10):2387-2425.
doi: 10.1016/j.polymer.2008.02.002
[3] SHAN H R, WANG X Q, SHI F H, et al. Hierarchical porous structured SiO2/SnO2 nanofibrous membrane with superb flexibility for molecular filtration[J]. ACS Applied Materials Interfaces, 2017,9(22):18966-18976.
pmid: 28509531
[4] FANG W Y, LIU L B, LI T, et al. Electrospun N-substituted polyurethane membranes with self-healing ability for self-cleaning and oil/water separation[J]. Chemistry: A European Journal, 2016,22(3):878-883.
doi: 10.1002/chem.201504340
[5] ZHANG P, SHAO C, ZHANG Z, et al. In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol[J]. Nanoscale, 2011,3(8):3357-3363.
doi: 10.1039/c1nr10405e pmid: 21761072
[6] GORJI M, JEDDI A A A, GHAREHAGHAJI A A. Fabrication and characterization of polyurethane electrospun nanofiber membranes for protective clothing applications[J]. Journal of Applied Polymer Science, 2012,125(5):4135-4141.
doi: 10.1002/app.v125.5
[7] WANG X Q, LI Y, LI X Q, et al. Equipment-free chromatic determination of formaldehyde by utilizing pararosaniline-functionalized cellulose nanofibrous membranes[J]. Sensors & Actuators B: Chemical, 2014,203:333-339.
[8] SAETIA K, SCHNORR J M, MANNARINO M M, et al. Spray-layer-by-layer carbon nanotube/electrospun fiber electrodes for flexible chemiresistive sensor applications[J]. Advanced Functional Materials, 2014,24(4):492-502.
doi: 10.1002/adfm.201302344
[9] IQBAL N, WANG X F, GE J L, et al. Cobalt oxide nanoparticles embedded in flexible carbon nanofibers: attractive material for supercapacitor electrodes and CO2 adsorption[J]. RSC Advances, 2016,6(57):52171-52179.
doi: 10.1039/C6RA06077C
[10] YE W, ZHU J, LIAO X J, et al. Hierarchical three-dimensional micro/nano-architecture of polyaniline nanowires wrapped-on polyimide nanofibers for high performance lithium-ion battery separators[J]. Journal of Power Sources, 2015,299(60):417-424.
doi: 10.1016/j.jpowsour.2015.09.037
[11] WANG X F, ZHANG K, ZHU M F, et al. Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method[J]. Polymer, 2008,49(11):2755-2761.
doi: 10.1016/j.polymer.2008.04.015
[12] SHUAKAT M N, LIN T. Highly-twisted, continuous nanofibre yarns prepared by a hybrid needle-needleless electrospinning[J]. RSC Advances, 2015,5(43):33930-33937.
doi: 10.1039/C5RA03906A
[13] WU J L, LIU S, HE L P, et al. Electrospun nanoyarn scaffold and its application in tissue engineering[J]. Materials Letters, 2012,89(24):146-149.
doi: 10.1016/j.matlet.2012.08.141
[14] ALI U, NIU H, ABBAS A, et al. Online stretching of directly electrospun nanofiber yarns[J]. RSC Advances, 2016,6(36):30564-30569.
doi: 10.1039/C6RA01856D
[15] HE J X, ZHOU Y M, QI K, et al. Continuous twisted nanofiber yarns fabricated by double conjugate electrospinning[J]. Fibers & Polymers, 2013,14(11):1857-1863.
[16] LEVITT A S, KNITTED C E, VALLETT R, et al. Investigation of nanoyarn preparation by modified electrospinning setup[J]. Journal of Applied Polymer Science, 2017,134(19):44813.
doi: 10.1002/app.44813 pmid: 28579635
[17] 于伟东. 纺织材料学[M]. 北京: 中国纺织出版社, 2006:26.
YU Weidong. Textile Materials Science[M]. Beijing: China Textile & Apparel Press, 2006: 26.
[18] CHEN Z M, XIN B J, WU X J, et al. Preparation and characterization of PSA/CNT composites and fibres[J]. Fibres & Textiles in Eastern Europe, 2012,94(5):21-25.
[19] XI T, XIN B J. Preparation and characterization of polyester staple yarns nanowrapped with polysulfone amide fibers[J]. Industrial & Engineering Chemistry Research, 2015,54(49):12303-12312.
[20] RUHLAND K, FRENZEL R, HORNY R, et al. Investigation of the chemical changes during thermal treatment of polyacrylonitrile and 15N-labelled polyacrylonitrile by means of in-situ FTIR and 15N NMR spectroscopy[J]. Polymer Degradation & Stability, 2017,146:298-316.
[21] MA Y, ZHOU T, SU G, et al. Understanding the crystallization behavior of polyamide6/polyamide66 alloys from the perspective of hydrogen bonds: projection moving-window 2D correlation FTIR spectroscopy and the enthalpy[J]. RSC Advances, 2016,6(90):87405-87415.
doi: 10.1039/C6RA09611E
[22] BARUAH K, HAZARIKA S, BORTHAKUR S, et al. Preparation and characterization of polysulfone-cyclodextrin composite nanofiltration membrane: solvent effect[J]. Journal of Applied Polymer Science, 2012,125(5):3888-3898.
doi: 10.1002/app.v125.5
[1] 潘璐, 程亭亭, 徐岚. 聚己内酯/ 聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[2] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[3] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[4] 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2 纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173.
[5] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[6] 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/ 聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26.
[7] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[8] 洪贤良, 陈小晖, 张建青, 刘俊杰, 黄晨, 丁伊可, 洪慧. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(06): 174-182.
[9] 王婷婷, 刘梁, 曹秀明, 王清清. 竹红菌素-聚( 甲基丙烯酸甲酯-co-甲基丙烯酸)纳米纤维的制备及其光敏抗菌性能[J]. 纺织学报, 2020, 41(05): 1-7.
[10] 孙范忱, 郭静, 于跃, 张森. 聚羟基脂肪酸酯/ 海藻酸钠纳米纤维的制备及其性能[J]. 纺织学报, 2020, 41(05): 15-19.
[11] 张一敏, 周伟涛, 何建新, 杜姗, 陈香香, 崔世忠. 偕胺肟化SiO2 / 聚丙烯腈复合纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(05): 25-29.
[12] 钱怡帆, 周堂, 张礼颖, 刘万双, 凤权. 聚丙烯腈/ 醋酸纤维素/ TiO2 复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(05): 8-14.
[13] 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
[14] 赵亚奇, 郭雯静, 杜玲枝, 赵振新, 赵海鹏. 自由基引发剂制备高相对分子质量聚丙烯腈研究进展[J]. 纺织学报, 2020, 41(04): 174-180.
[15] 吴横, 金欣, 王闻宇, 朱正涛, 林童, 牛家嵘. 聚丙烯腈/ 硝酸钠纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2020, 41(03): 26-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!