纺织学报 ›› 2019, Vol. 40 ›› Issue (03): 26-31.doi: 10.13475/j.fzxb.20180302906
KE Huizhen1,2(), LI Yonggui1,2
摘要:
为克服癸酸-棕榈酸-硬脂酸(CA-PA-SA)三元低共熔物液相渗漏和导热性能差的问题,以不同质量比的静电纺聚丙烯腈/氮化硼(PAN/BN)复合纳米纤维膜作为支撑材料,通过物理吸附法制备新型CA-PA-SA/PAN/BN复合相变纤维膜,并研究了BN导热纳米粒子对复合相变纤维膜的形貌结构、储热性能以及储热和放热速率的影响。结果表明:添加质量分数为10%的BN导热纳米粒子对制备的CA-PA-SA/PAN/BN复合相变纤维膜的形貌结构没有影响;复合相变纤维膜的融化温度和融化焓值分别为25 ℃和136.4~138.6 kJ/kg;通过添加具有高导热系数的BN纳米粒子,CA-PA-SA/PAN/BN复合相变纤维膜的整体传热性能增强,储热和放热时间分别缩短了38%和41%。
中图分类号:
[1] |
BASTANI A, HAGHIGHAT F. Expanding Heisler chart to characterize heat transfer phenomena in a building envelope integrated with phase change materials[J]. Energy and Buildings, 2015,106:164-174.
doi: 10.1016/j.enbuild.2015.05.034 |
[2] |
ZHANG SL, WU W, WANG SF. Integration highly concentrated photovoltaic module exhaust heat recovery system with adsorption air-conditioning module via phase change materials[J]. Energy, 2017,118:1187-1197.
doi: 10.1016/j.energy.2016.10.139 |
[3] |
FIORETTI R, PRINCIPI P, COPERTARO B. A refrigerated container envelope with a PCM (phase change material) layer: experimental and theoretical investigation in a representative town in central Italy[J]. Energy Conversion and Management, 2016,122:131-141.
doi: 10.1016/j.enconman.2016.05.071 |
[4] | 徐素梅, 哈丽丹·买买提, 米娜瓦尔·乌买尔, 等. 月桂酸纤维素酯/聚乙二醇相变储能纤维的制备及其性能[J]. 纺织学报, 2016,37(4):7-14. |
XU Sumei, HALIDAN Maimaiti, MINAWAR Wumaier, et al. Preparation and performance of cellulose lauric acid esters/polyethylene glycal grafted copolymer fibers[J]. Journal of Textile Research, 2016,37(4):7-14. | |
[5] |
YUAN YP, ZHANG N, TAO WQ, et al. Fatty acids as phase change materials: a review[J]. Renewable and Sustainable Energy Reviews, 2014,29:482-498.
doi: 10.1016/j.rser.2013.08.107 |
[6] | ZENG JL, ZHU FR, YU SB, et al. Myristic acid/polyaniline composites as form stable phase change materials for thermal energy storage[J]. Solar Energy Materials & Solar Cells, 2013,114:136-140. |
[7] | CAI YB, GAO CT, XU XL, et al. Electrospun ultrafine composite fibers consisting of lauric acid and polyamide 6 as form-stable phase change materials for storage and retrieval of solar thermal energy[J]. Solar Energy Materials & Solar Cells, 2012,103:53-61. |
[8] |
LI X Y, CHEN H S, LI H Q, et al. Integration of form-stable paraffin/nanosilica phase change material composites into vacuum insulation panels for thermal energy storage[J]. Applied Energy, 2015,159:601-609.
doi: 10.1016/j.apenergy.2015.09.031 |
[9] |
WANG S P, QIN P, FANG X M, et al. A novel sebacic acid/expanded graphite composite phase change material for solar thermal medium-temperature applications[J]. Solar Energy, 2014,99:283-290.
doi: 10.1016/j.solener.2013.11.018 |
[10] |
DENG Y, LI J H, QIAN T T, et al. Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage[J]. Chemical Engineering Journal, 2016,295:427-435.
doi: 10.1016/j.cej.2016.03.068 |
[11] |
LOHRASBI S, SHEIKHOLESLAMI M, GANJI D D. Multi-objective RSM optimization of fin assisted latent heat thermal energy storage system based on solidification process of phase change material in presence of copper nanoparticles[J]. Applied Thermal Engineering, 2017,118:430-447.
doi: 10.1016/j.applthermaleng.2017.03.005 |
[12] |
QI G Q, YANG J, BAO R Y, et al. Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage[J]. Nano Research, 2017,10(3):802-813.
doi: 10.1007/s12274-016-1333-1 |
[13] |
WANG L J, HAN D B, LUO J, et al. Highly efficient growth of boron nitride nanotubes and the thermal conductivity of their polymer composites[J]. The Journal of Physical Chemistry C, 2018,122:1867-1873.
doi: 10.1021/acs.jpcc.7b10761 |
[14] |
KE H Z. Phase diagrams, eutectic mass ratios and thermal energy storage properties of multiple fatty acid eutectics as novel solid-liquid phase change materials for storage and retrieval of thermal energy[J]. Applied Thermal Engineering, 2017,113:1319-1331.
doi: 10.1016/j.applthermaleng.2016.11.158 |
[15] |
KE HZ, GHULAM MUH, LI YG, et al. Ag-coated polyurethane fibers membranes absorbed with quinary fatty acid eutectics solid-liquid phase change materials for storage and retrieval of thermal energy[J]. Renewable Energy, 2016,99:1-9.
doi: 10.1016/j.renene.2016.06.033 |
[16] |
SARI A, KARAIPEKLI A. Preparation and thermal properties of capric acid/palmitic acid eutectic mixture as a phase change energy storage material[J]. Materials Letters, 2008,62:903-906.
doi: 10.1016/j.matlet.2007.07.025 |
[17] |
SARIER N, ONDER E. Organic phase change materials and their textile applications: an overview[J]. Thermochimica Acta, 2012,540:7-60.
doi: 10.1016/j.tca.2012.04.013 |
[18] |
MONDAL S. Phase change materials for smart textiles: an overview[J]. Applied Thermal Engineering, 2008,28:1536-1550.
doi: 10.1016/j.applthermaleng.2007.08.009 |
[1] | 柯惠珍 蔡以兵 魏取福 黄锋林. 静电纺LA-PA∕定形相变复合纤维的制备与表征[J]. 纺织学报, 2012, 33(10): 1-6. |
[2] | 黄大宇;王晓璐. 并条机牵伸罗拉斜齿顶面CBN砂轮磨削加工[J]. 纺织学报, 2008, 29(3): 110-112. |
[3] | 李春广;王登化. GCr15钢领内跑道立方氮化硼砂轮磨削[J]. 纺织学报, 2007, 28(6): 109-111. |
[4] | 陈剑飞;彭竹琴;张素香;张瑞杰;史建茹;徐战彬. GCr15锭杆锭尖立方氮化硼砂轮磨削研究[J]. 纺织学报, 2003, 24(06): 92-93. |
|