纺织学报 ›› 2019, Vol. 40 ›› Issue (04): 77-82.doi: 10.13475/j.fzxb.20180406506

• 染整与化学品 • 上一篇    下一篇

活性红195在中性电解质溶液中的聚集行为

王阿明1, 夏良君1,2, 王运利1()   

  1. 1.武汉纺织大学 纺织新材料与先进加工技术国家重点实验室培育基地, 湖北 武汉 430200
    2.迪肯大学 前沿材料研究院, 澳大利亚 吉朗 VIC 3220
  • 收稿日期:2018-04-27 修回日期:2018-08-22 出版日期:2019-04-15 发布日期:2019-04-16
  • 通讯作者: 王运利
  • 作者简介:王阿明(1993—),男,硕士生。主要研究方向为有机溶剂在染色中的应用及开发。
  • 基金资助:
    湖北省自然科学基金项目(2014CFB753)

Aggregation behavior of Reactive Red 195 in neutral electrolyte solution

WANG Aming1, XIA Liangjun1,2, WANG Yunli1()   

  1. 1. Institute of National Key Laboratory of Textile New Materials and Advanced Processing Technology, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. Institute for Frontier Materials, Deakin University, Geelong VIC 3220, Australia
  • Received:2018-04-27 Revised:2018-08-22 Online:2019-04-15 Published:2019-04-16
  • Contact: WANG Yunli

摘要:

为研究染料聚集行为及其对染色上染率的影响,将不同质量浓度的6种中性电解质加入到活性红195染料溶液中,借助紫外-可见分光光度计和激光粒度仪等研究了活性红195染料在不同电解质溶液中的聚集行为,并探讨了电解质对染色上染率的影响。结果表明:随着电解质质量浓度的增大,染料聚集程度增大;常温下,6种金属离子对染料聚集的影响程度依次为Al3+ > Ca2+ > Mg2+ > K+ > Na+ > Li+;电解质中所含金属离子的离子半径越大、化合价越高,越易引发染料聚集,其中金属离子的化合价是影响染料聚集的主要因素;染色时染料聚集程度越大,上染率越高。

关键词: 活性染料, 电解质, 聚集行为, 粒径, 上染率

Abstract:

In order to study the aggregation behavior of Reactive Red 195 and its effect on dye uptake, six neutral electrolytes with different concentrations were added into the Reactive Red 195 dye solution. The aggregation behaviors of Reactive Red 195 in different electrolyte solutions were studied by means of UV-Vis spectrophotometer and laser particle size analyzer, and the influence of different electrolytes on the dye uptake of Reactive Red 195 was investigated. The results show that with the increase of the electrolyte concentration, the degree of dye aggregation increases. At room temperature, the degree of influence of the six metal ions on dye aggregation is Al3+ > Ca2+ > Mg2+ > K+ > Na+ > Li+. The degree of dye aggregation is enhanced with the increase in ionic radius and valence of metal ions. Among them, the valence of metal ions is the main factor influencing dye aggregation. During dyeing process, the dye uptake is enhanced with the increase of dye aggregation.

Key words: reactive dye, electrolyte, aggregation behavior, particle size, dye uptake

中图分类号: 

  • TS190

图1

活性红195的化学结构"

图2

电解质质量浓度对活性红195吸收光谱的影响 注:电解质质量浓度1-0 g/L;2-15 g/L;3-30 g/L;4-45 g/L;5-60 g/L;6-75 g/L。"

图3

电解质质量浓度对活性红195最大吸光度和最大吸收波长的影响"

图4

电解质质量浓度对活性红195粒径和Zeta电位的影响 注:电解质依次为1#-LiCl· H2O; 2#-NaCl;3#-KCl;4#-MgCl2· 6H2O; 5#-CaCl2;6#-AlCl3· 6H2O。"

图5

电解质质量浓度对活性红195粒径的增加量和Zeta电位的降低量的影响 注: 1#-LiCl· H2O; 2#-NaCl; 3#-KCl;4#-MgCl2· 6H2O; 5#-CaCl2; 6#-AlCl3· 6H2O。"

表1

电解质类型对上染率的影响"

电解质名称 平均上染率
LiCl· H2O 17.8
NaCl 26.8
KCl 38.1
CaCl2 39.4
MgCl2· 6H2O 29.2
AlCl3· 6H2O 34.3
[1] 舒大武, 房宽峻, 刘秀明, 等. 织物升温速率对活性染料轧-蒸无盐染色的影响[J]. 纺织学报, 2018,39(2):106-111.
SHU Dawu, FANG Kuanjun, LIU Xiuming, et al. Influence of fabric heating rate on salt-free pad-steam dyeing of reactive dye[J]. Journal of Textile Research, 2018,39(2):106-111.
[2] SARDARI K, ASKEGAARD J, CHIAO Y H, et al. Electrocoagulation followed by ultrafiltration for treating poultry processing wastewater[J]. Journal of Environmental Chemical Engineering, 2018,6(4):4937-4944.
[3] IQBAL M, KHATRI Z, AHMED A, et al. Prediction of low-sensitivity reactive dye recipe in exhaust dyeing influenced by material to liquor ratio and nature of salt[J]. Journal of Saudi Chemical Society, 2016,16(1):1-6.
[4] JIANG S, WANG Y L, SHENG D, et al. Examination of the dyeing properties of pigment printing fabrics in a water-ethanol mixed solvent[J]. Carbohydrate Polymers, 2016,153:364-370.
pmid: 27561507
[5] TENG X X, MA W, ZHANG S F. Application of tertiary amine cationic polyacrylamide with high cationic degree in salt-free dyeing of reactive dyes[J]. Chinese Journal of Chemical Engineering, 2010,18(6):1023-1028.
[6] GILANI A G, MOGHADAM M, HOSSEINI S E, et al. A comparative study on the aggregate formation of two oxazine dyes in aqueous and aqueous urea solutions[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011,83(1):100-105.
[7] 梁静, 钟毅, 毛志平, 等. 晶型对分散染料染色性能的影响[J]. 纺织学报, 2018,39(7):69-73.
LIANG Jing, ZHONG Yi, MAO Zhiping, et al. Effect of crystal form on dyeing behavior of disperse dyes[J]. Journal of Textile Research, 2018,39(7):69-73.
[8] FUNAZUKURI T, YAMASAKI T, TAGUCHI M, et al. Measurement of binary diffusion coefficient and solubility estimation for dyes in supercritical carbon dioxide by CIR method[J]. Fluid Phase Equilibria, 2016,420:7-13.
[9] NICOLA G D, PIERANTOZZI M, TOMASSETTI S, et al. Surface tension calculation from liquid viscosity data of silanes[J]. Fluid Phase Equilibria, 2018,463:11-17.
[10] WILSON A D, STEWART F F. Deriving osmotic pressures of draw solutes used in osmotically driven membrane processes[J]. Journal of Membrane Science, 2013,431:205-211.
[11] BOUZIDI A, YAHIA I S, EL-SADEK M S A. Novel and highly stable indigo (C. I. Vat Blue I) organic semiconductor dye: crystal structure, optically diffused reflectance and the electrical conductivity/dielectric behaviors[J]. Dyes and Pigments, 2017,146:66-72.
[12] PETUKHOV A V, MEIJER J M, VROEGE G J. Particle shape effects in colloidal crystals and colloidal liquid crystals: small-angle X-ray scattering studies with microradian resolution[J]. Current Opinion in Colloid & Interface Science, 2015,20(4):272-281.
[13] NAVARRO A, SANZ F. Dye aggregation in solution: study of C.I. direct red I[J]. Dyes and Pigments, 1999,40(2/3):131-139.
[14] ENCHEV V, GADJEV N, ANGELOV I. Green synjournal, structure and fluorescence spectra of new azacyanine dyes[J]. Journal of Molecular Structure, 2017,1147:380-387.
doi: 10.1016/j.molstruc.2017.06.119
[15] MURUGESAN J R, SHAHOUT F, DLIM M, et al. Revealing dye and dye-drug aggregation into nano-entities using NMR[J]. Dyes and Pigments, 2018,153:300-306.
doi: 10.1016/j.dyepig.2018.02.026
[16] 刘艳春, 白刚, 钱红飞. 聚酰亚胺织物的羧基化表面改性[J]. 纺织学报, 2018,39(3):103-107.
LIU Yanchun, BAI Gang, QIAN Hongfei. Surface modification of polyimide fabric by carboxylation[J]. Journal of Textile Research, 2018,39(3):103-107.
[17] ZHANG Y Z, XIANG J F, TANG Y L, et al. Aggregation behaviour of two thiacarbocyanine dyes in aqueous solution[J]. Dyes and Pigments, 2008,76(1):88-93.
[18] 廖霞, 唐人成. 活性染料在中性盐溶液中的聚集[J]. 染料与染色, 2007,44(1):21-24.
LIAO Xia, TANG Rencheng. Aggregation of reactive dyes in neutral salt solution[J]. Dye and Dyeing, 2007,44(1):21-24.
[19] 俞巨乐. 高浓度活性染料溶液聚集性能的研究[D]. 上海: 东华大学, 2014: 5.
YU Jule. Study on the aggregation performance of reactive dye solution with high concentration[D]. Shanghai: Donghua University, 2014: 5.
[20] HAMLIN J D, PHILLIPS D A S, WHITING A. UV/visible spectroscopic studies of the effects of common salt and urea upon reactive dye solution[J]. Dyes and Pigments, 1999,41(1/2):137-142.
[21] 俞巨乐, 高方容, 王建庆. 高浓度活性染料溶液的电导率[J]. 纺织学报, 2014,35(9):85-89.
YU Jule, GAO Fangrong, WANG Jianqing. Conductivity of highly concentrated solution of reactive dye[J]. Journal of Textile Research, 2014,35(9):85-89.
[22] 张向宇. 实用化学手册[M].2版. 北京: 国防工业出版社, 2011: 16-21.
ZHANG Xiangyu. Practical Chemistry Handbook[M]. 2nd ed. Beijing: National Defense Industry Press, 2011: 16-21.
[23] 俞巨乐, 胡重法, 高方容, 等. 活性橙13溶液的染料聚集行为[J]. 印染, 2014 (10):1-5.
YU Jule, HU Chongfa, GAO Fangrong, et al. Aggregation behavior of Reactive Orange 13 in aqueous solution[J]. China Dyeing & Finishing, 2014 (10):1-5.
[24] 赵涛. 染整工艺与原理: 下册[M]. 北京: 中国纺织出版社, 2009: 86.
ZHAO Tao. Dyeing and Finishing Technology and Principles Volume II[M]. Beijing: China Textile & Apparel Press, 2009: 86.
[25] JOHN A D. Lange's Handbook of Chemistry[M]. 15th ed. New York: Mcgraw-Hill Inc, 1985: 846-852.
[1] 李庆, 管斌斌, 王雅, 刘天卉, 张洛红, 樊增禄. 光敏剂敏化Cu-有机骨架对活性深蓝K-R 的高效光催化降解[J]. 纺织学报, 2020, 41(10): 87-93.
[2] 杨小兵, 程钧, 张守鑫, 姚红, 陆林, 丁松涛. 口罩过滤效率检测用颗粒物粒径的换算和标准比对[J]. 纺织学报, 2020, 41(08): 152-157.
[3] 丁永生, 代亚敏, 钟毅, 徐红, 毛志平, 张琳萍, 陈支泽. 棉纱线在活性染料皮克林乳液体系中的染色动力学[J]. 纺织学报, 2020, 41(07): 101-108.
[4] 张炜, 毛庆楷, 朱鹏, 柴雄, 李惠军. 乙醇/ 水体系中改性蚕丝织物的活性染料染色动力学和热力学[J]. 纺织学报, 2020, 41(06): 86-92.
[5] 吴伟, 陈小文, 钟毅, 徐红, 毛志平. 硫酸钠在低带液轧-焙-蒸活性染料染色中的作用[J]. 纺织学报, 2020, 41(05): 85-93.
[6] 王森, 陈英. 纳米TiO2 稳定乳液的制备及其在微胶囊制备中的应用[J]. 纺织学报, 2020, 41(05): 105-111.
[7] 王秋平, 毛志平, 钟毅, 徐红, 张琳萍. 平幅轧染中针织物形变对染色的影响[J]. 纺织学报, 2019, 40(11): 94-99.
[8] 杨海贞, 房宽峻, 刘秀明, 蔡玉青, 安芳芳, 韩双. 棉织物组织结构对墨滴铺展及颜色性能的影响[J]. 纺织学报, 2019, 40(07): 78-84.
[9] 陶开鑫, 俞成丙, 侯颀骜, 吴聪杰, 刘引烽. 基于最小二乘支持向量机的棉针织物活性染料湿蒸染色预测模型[J]. 纺织学报, 2019, 40(07): 169-173.
[10] 王宗乾, 王邓峰, 周杭, 李俊. 超声波辅助对乳化交联工艺制备丝素蛋白微球形貌的影响[J]. 纺织学报, 2019, 40(02): 119-124.
[11] 梁静 钟毅 毛志平 徐红 张琳萍 隋晓锋. 晶型对分散染料染色性能的影响[J]. 纺织学报, 2018, 39(07): 69-73.
[12] 舒大武 房宽峻 刘秀明 刘曰兴 蔡玉青 门雅静 李付杰. 活性染料无盐连续轧-蒸与冷轧堆染色效果的比较[J]. 纺织学报, 2018, 39(04): 77-81.
[13] 安亚洁 李敏 杜长森 田安丽 张奕 付少海. 微量墨滴在蚕丝机织物上的扩散行为[J]. 纺织学报, 2018, 39(04): 87-92.
[14] 舒大武 房宽峻 刘秀明 李新禹 刘曰兴 张健飞 张鑫卿. 织物升温速率对活性染料轧-蒸无盐染色的影响[J]. 纺织学报, 2018, 39(02): 106-111.
[15] 俞俭 王业师 吕景春 周天池 魏取福. 低温等离子体处理木棉纤维的染色性能[J]. 纺织学报, 2017, 38(12): 88-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!