纺织学报 ›› 2019, Vol. 40 ›› Issue (04): 38-43.doi: 10.13475/j.fzxb.20180503906

• 纤维材料 • 上一篇    下一篇

深冷处理温度对锡锑/碳纳米纤维负极材料锂电性能的影响

刘慧洁, 夏鑫()   

  1. 新疆大学 纺织与服装学院, 新疆 乌鲁木齐 830046
  • 收稿日期:2018-05-16 修回日期:2019-01-05 出版日期:2019-04-15 发布日期:2019-04-16
  • 通讯作者: 夏鑫
  • 作者简介:刘慧洁(1996—),女。主要研究方向为功能性纺织材料的开发与应用。
  • 基金资助:
    国家自然科学基金项目(51763022);新疆特色纺织材料开发及应用研究创新团队项目(201705151);大学生创新项目(201710755007);新疆大学四期教改项目(XJU2015JGY36)

Influence of deep cryogenic treatment temperature on lithium electrical properties of SnSb/C nanofiber anode material

LIU Huijie, XIA Xin()   

  1. College of Textiles and Clothing, Xinjiang Unversity, Urumqi, Xinjiang 830046, China
  • Received:2018-05-16 Revised:2019-01-05 Online:2019-04-15 Published:2019-04-16
  • Contact: XIA Xin

摘要:

为提高锡锑/碳(SnSb/C)纳米纤维作为负极材料的锂电池的循环使用性能,利用深冷处理对SnSb/C纳米纤维进行形貌再造,比较不同深冷温度处理前后纳米纤维的形貌变化,并测试其含碳量和比表面积,通过分析电池的恒流充放电曲线研究深冷处理温度的变化对其电化学性能的影响。结果表明:当深冷处理温度为 -100 ℃时,SnSb/C纳米纤维表面粗糙度增加并出现沟壑;深冷处理加快了聚丙烯腈的预氧化反应速度,使其分解温度提前,含碳量高达75.4%,比表面积为214.0 m2/g;锂电循环过程中,因深冷处理对其形貌结构的影响,电池容量呈持续上升趋势,循环120圈后容量保持率为123.5%。

关键词: SnSb/C纳米纤维负极材料, 锂电池, 深冷处理, 循环性能, 电化学性能

Abstract:

In order to improve the electrochemical performance of SnSb/C nanofibers anodes for lithium-ion battery, the deep cryogenic treatment was used to modify the morphology of SnSb/C nanofibers, the influence of cryogenic temperature on the electrochemical performance was studied by comparing the changes of morphology, the specific surface area, the carbon contents and the charge-discharge curve of SnSb/C nanofibers. The results show that when the cryogenic temperature is -100 ℃, SnSb/C nanofiber has a rough surface with gullies. The cryogenic treatment accelerates the preoxidation reaction speed of polyacrylonitrile, so that the decomposition temperature decrease, the carbon content is up to 75.4% and the specific surface increases to 214.0 m2/g. Besides, owing to the influence of deep cryogenic treatment on the morphology of SnSb/C nanofibers, the battery capacity sustainably increases during the cycling of the lithium ion battery. After 120 cycles, the capacity retention ratio is still 123.5%.

Key words: SnSb/C nanofiber anode material, lithium battery, deep cryogenic treatment, cycle performance, electrochemical property

中图分类号: 

  • O646.21

图1

深冷箱控温曲线"

图2

不同深冷处理温度下SnSb/C纳米纤维的扫描电镜照片"

图3

不同深冷处理温度下SnSb/C纤维前驱体的TG曲线"

图4

不同深冷处理温度下的氮气吸附/解吸附曲线"

图5

不同深冷处理温度下的X射线衍射图"

图6

不同深冷处理温度下的SnSb/C纳米纤维充放电曲线"

图7

不同深冷处理温度下SnSb/C纳米纤维的循环性能曲线"

[1] 陆浩, 刘柏男, 褚赓, 等. 锂离子电池负极材料产业化技术进展[J]. 储能科学与技术, 2016,5(2):109-119.
LU Hao, LIU Bonan, ZHE Geng, et al. Technology review of anode materials for lithium ion batteries[J]. Energy Storage Science and Technology, 2016,5(2):109-119.
[2] 黄丽宏, 闵忠华, 张勤勇. 锂离子电池负极材料的研究现状及研究方向[J]. 西华大学学报(自然科学版), 2013,32(6):21-28.
HUANG Lihong, MIN Zhonghua, ZHANG Qinyong. The research status of anode materials in lithium ion bat-teries[J]. Journal of Xihua University(Natural Science Edition), 2013,32(6):21-28.
[3] 李娟, 汝强, 胡社军, 等. 锂离子电池SnSb/C复合负极材料的热碳还原法制备及电化学性能研究[J]. 物理学报, 2014,63(16):426-434.
LI Juan, RU Qiang, HU Shejun, et al. Lithium intercalation properties of SnSb/C composite in carb onthermal reduction as the anode material for lithium ion battery[J]. Acta Physica Sinica, 2014,63(16):426-434.
[4] 桂雪峰, 许凯, 彭军, 等. 静电纺丝技术在新能源电池中应用的研究进展[J]. 广州化学, 2016,41(1):59-65.
GUI Xuefeng, XU Kai, PENG Jun, et al. Progress of application of electrospinning technique in new energy battery[J]. Guangzhou Chemistry, 2016,41(1):59-65.
[5] 龚雪, 杨金龙, 姜玉林, 等. 静电纺丝技术在锂离子动力电池中的应用[J]. 化学进展, 2014,26(1):41-47.
GONG Xue, YANG Jinlong, JIANG Yulin, et al. The electrostatic spinning technology in the application of lithium ion power battery[J]. Progress in Chemistry, 2014,26(1):41-47.
[6] 焦鹏鹤. 超细晶YG10硬质合金的制备及深冷处理研究[D]. 重庆:西南大学, 2012: 20-21.
JIAO Penghe. Study of ultrafine-grain YG10 cementedcarbide preparation and deep cryogenic treatment[D]. Chongqing:Xinan University, 2012: 20-21.
[7] 陈鼎, 陈吉华, 严红革, 等. 深冷处理原理及其在工业上的应用[J]. 兵器材料科学与工程, 2003,26(3):68-72.
CHEN Ding, CHEN Jihua, YAN Hongge, et al. Mechanism & industrial applications of cryogenic treatment[J]. Ordnance Materials Science and Engineering, 2003,26(3):68-72.
[8] 杨叶. 合金元素和深冷处理对铸造铝硅合金性能及组织的影响[D]. 沈阳:沈阳工业大学, 2015: 26-40.
YANG Ye. The effect of alloy element and cryogenic treatment on Al-Si alloy mechanical properties and microstructure[D]. Shenyang:Shenyang University of Technology, 2015: 26-40.
[9] XIA Xin, LI Zhiyong, ZHOU Huimin, et al. The effect of deep cryogenic treatment on SnSb/C nanofibers anodes for Li-ion battery[J]. Electrochimica Acta, 2016,222:765-772.
[10] 瞿梅梅. 预氧化碳化工艺对电纺PAN基碳纤维结构性能的影响[D]. 北京:北京化工大学, 2016: 6-14.
QU Meimei. Effects of stabilization and carbonization on structural and mechnical properties of electrospun PAN-based carbon fibers and structures of precursor nanofibers[D]. Beijing: Beijing University of Chemical Technology, 2016: 6-14.
[11] CAI J, LI Z, SHEN P K. Porous SnS nanorods/carbon hybrid materials as highly stable and high capacity anode for Li-ion batteries[J]. ACS Appl Mater Interfaces, 2012,4(8):4093-4098.
pmid: 22852819
[12] LI H, ZHU G, HUANG X, et al. Synjournal and electrochemical performance of dendrite-like nanosized SnSb alloy prepared by co-precipitation in alcohol solution at low temperature[J]. Journal of Materials Chemistry, 2000,10(3):693-696.
[13] 李可雨. 不同Sn含量无定形Sn/C纳米纤维负极材料的制备及其性能优化[D]. 北京:北京化工大学, 2012: 36-42.
LI Keyu. Study of the preparation and properperties ofamorphous Sn/C nanofibers anode materials with different Sn content[D]. Beijing:Beijing University of Chemical Technology, 2012: 36-42.
[14] PARK C M, JEON K J. Porous structured SnSb/C nanocomposites for Li-ion battery anodes[J]. Chemical Communications, 2011,47(7):2122-2124.
pmid: 21180761
[1] 李育洲, 张雨凡, 周青青, 陈国强, 邢铁玲. 二氧化锰/ 石墨烯/ 棉织物复合电极的制及其电化学性能 [J]. 纺织学报, 2020, 41(01): 96-101.
[2] 赵金洋, 孙窈, 张鑫, 张悦悦, 赵浩阅, 夏鑫. 锡/碳纳米纤维锂电负极材料形貌结构再造及其机制[J]. 纺织学报, 2019, 40(08): 7-13.
[3] 陈悦, 赵永欢, 褚朱丹, 庄志山, 邱琳琳, 杜平凡. 基于碳纤维及其织物的柔性锂电池电极研究进展[J]. 纺织学报, 2019, 40(02): 173-180.
[4] 陈洪立 焦晓宁 柯鹏. 取向增强复合锂离子电池隔膜的制备及其性能[J]. 纺织学报, 2018, 39(07): 8-14.
[5] 夏鑫 陈玲 李智勇 邱夷平. 深冷处理对锡锑/碳纳米纤维的形貌再造及其机制[J]. 纺织学报, 2017, 38(03): 23-27.
[6] 周锦涛 焦晓宁 于宾. 复合锂离子电池隔膜的制备及其电化学性能[J]. 纺织学报, 2017, 38(01): 23-28.
[7] 夏鑫 李群华 周惠敏 魏取福 张向武. 皮芯结构Sn∕C包覆碳杂化纳米纤维的制备及其在锂离子负极材料中的应用[J]. 纺织学报, 2014, 35(8): 1-0.
[8] 高大伟 王丽丽 魏取福 王春霞 刘国亮. 碳基复合纳米纤维的制备与表征及其电容性[J]. 纺织学报, 2014, 35(1): 20-0.
[9] 曾凡龙 刘占莲 韩芹 曹谦芝 仲林 肖婷婷. 活性炭纤维/NiO/MnO2复合电极的结构及其电化学性能[J]. 纺织学报, 2013, 34(10): 1-0.
[10] 任萍;杨阳;刘静. 人体足部传热数值模拟及加热实验[J]. 纺织学报, 2009, 30(03): 99-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!