纺织学报 ›› 2019, Vol. 40 ›› Issue (04): 152-157.doi: 10.13475/j.fzxb.20180501206

• 管理与信息化 • 上一篇    下一篇

应用多尺度多方向模板卷积的筒子纱缺陷检测

蔡逸超, 周晓(), 宋明峰, 牟新刚   

  1. 武汉理工大学 机电工程学院, 湖北 武汉 430070
  • 收稿日期:2018-05-04 修回日期:2019-01-31 出版日期:2019-04-15 发布日期:2019-04-16
  • 通讯作者: 周晓
  • 作者简介:蔡逸超(1994—),男,硕士生。主要研究方向为筒子纱的缺陷检测。
  • 基金资助:
    国家自然科学基金项目(61701357);中央高校基本科研业务费专项资金资助项目(183204007)

Defect detection of cheese yarn based on multi-scale multi-direction template convolution

CAI Yichao, ZHOU Xiao(), SONG Mingfeng, MOU Xin'gang   

  1. School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
  • Received:2018-05-04 Revised:2019-01-31 Online:2019-04-15 Published:2019-04-16
  • Contact: ZHOU Xiao

摘要:

针对筒子纱不规则的纹理基元增加缺陷检测难度的问题,提出一种基于多尺度多方向模板卷积的筒子纱表面网纱缺陷检测算法。首先通过系统采集筒子纱的顶面纹理图像;其次对原图像进行OTSU阈值处理,并采用椭圆拟合确定纹理位置,利用极坐标变换将其展开;然后利用水平方向一维高斯差分算子提取边缘,通过改变高斯核的标准差获取多个尺度的边缘图像;进而将0°~180°角度区间量化成多个方向模板与各尺度的边缘图像进行卷积,并投票记录每个像素位置在各尺度下的多方向模板卷积结果的最大值;最后,选取经验阈值对最强卷积响应进行分割得到缺陷图像。实验结果表明,该方法可有效检测筒子纱表面的网纱缺陷,识别准确率达0.96。

关键词: 筒子纱, 图像处理, 缺陷检测, 边缘提取, 多尺度分析, 模板卷积

Abstract:

Aiming at the hard defect detection due to coarse and irregular texture element of cheese yarn, a novel cheese yarn surface defects detection algorithm based on multiscale multi-direction template convolution was proposed. Firstly, the image of top textile of cheese yarn was acquired by the system. Secondly, the OTSU threshold method and the ellipse circle fitting method were used to determine the position of the textile region of cheese yarn. Then, the polar coordinate transformation was used to expand the ring-shape surface to a rectangle. After that, the one-dimensional difference of Gaussian operator in horizontal direction was used to extract the edge. Multiple scale edge images were extracted by varying the standard deviation of Gauss kernel. Furthermore, the angle range of 0° to 180° was quantified into several directional template images used to convolute with edge images, then the maximum convolution result of each pixel in among all scales was elected by voting method. Finally, the defects were segmented out from the maximum correlation image by an empirical threshold according to prior information. The experiment results show that the method can effectively detect the net-yarn surface defects, and the recognition accuracy reaches 96%.

Key words: cheese yarn, image processing, defect detecting, edge extraction, multi-scale analysis, template convolution

中图分类号: 

  • TS103.7

图1

系统工作原理"

图2

算法框图"

图3

图像预处理过程"

图4

缺陷检测示意图"

图5

缺陷纹理与正常纹理对比"

图6

普通和水平DoG提取的边缘图像"

图7

多方向边缘模板"

图9

缺陷检测结果"

图8

最大卷积响应结果"

[1] 牟新刚, 蔡逸超, 周晓. 基于机器视觉的筒子纱缺陷在线检测系统[J]. 纺织学报, 2018,39(1):139-145.
MOU Xingang, CAI Yichao, ZHOU Xiao. On-line yarn cone defects detection system based on machine vision[J]. Journal of Textile Research, 2018,39(1):139-145.
[2] 张志欢. 复杂纹理背景的织物疵点检测与定位研究[D]. 武汉:武汉纺织大学, 2011: 11-37.
ZHANG Zhihuan. Research on fabric defect detection and location of complex texture background[D]. Wuhan:Wuhan Textile University, 2011: 11-37
[3] ARNIA F, MUNADI K. Real time textile defect detection using GLCM in DCT-based compressed images[C]// 2015 6th International Conference on Modeling, Simulation,and Applied Optimtzat.[S.l.]:ICMSAO, 2015: 1-6.
[4] BISSI L, BARUFFA G, PLACIDI P. Automated defect detection in uniform and structed fabrics using Gabor filters and PCA[J]. Journal of Visual Communication & Image Representation, 2013,24(7):838-845.
[5] NGAN H Y T, PANG C K H, YUNG S P, et al. Wavelet based methods on patterned fabric defect detection[J]. Pattern Recognition, 2005,38(4):559-576.
[6] 陈晓惠, 郑晨, 段汕, 等. 形态学小波域多尺度马尔可夫模型在纹理图像分割中的应用[J]. 中国图象图形学报, 2011,16(5):761-766.
CHEN Xiaohui, ZHENG Chen, DUAN Shan, et al. Application of texture image segmentation based on a multi-resolution Markov random field model in morphological wavelets domain[J]. Journal of Image and Graphics, 2011,16(5):761-766.
[7] JING Junfeng, CHEN Shan, LI Pengfei. Fabric defect detection based on golden image subtraction[J]. Coloration Technology, 2016,133(1).DOI: 10.1111/cote.12239.
[8] HANMANDLU M, SUJATA D, CHOUDHURY D K. Fabric image defect detection by using GLCM and ROSETTA[J]. International Journal of Computer Science and Applications, 2009,2(1):47-50.
[9] 何薇, 白瑞林, 李新. 基于Gabor小波和神经网络的布匹瑕疵检测[J]. 计算机工程与应用, 2016,52(12):231-234.
HE Wei, BAI Ruilin, LI Xin. Fabric defect detection based on Gabor wavelet and neural network[J]. Computer Engineering and Applications, 2016,52(12):231-234.
[10] ZHANG J M, WANG X G, PALMER S. Objective grading of fabric pilling with wavelet texture analy-sis[J]. Textile Research Journal, 2005,75(12):801-811.
[11] CAO Junjie, ZHANG Jie, WEN Zhijie. Fabric defect inspection using prior knowledge guided least squares regression[J]. Multimedia Tools & Applications, 2015,76(3):1-17.
[1] 彭来湖, 祝孝裕, 张少民, 胡旭东. 筒子纱包装自动配重方法研究[J]. 纺织学报, 2020, 41(06): 147-152.
[2] 张建新, 李琦. 基于机器视觉的筒子纱密度在线检测系统[J]. 纺织学报, 2020, 41(06): 141-146.
[3] 路浩, 陈原. 基于机器视觉的碳纤维预浸料表面缺陷检测方法[J]. 纺织学报, 2020, 41(04): 51-57.
[4] 王文胜, 李天剑, 冉宇辰, 卢影, 黄民. 筒子纱纱笼纱杆的定位检测方法[J]. 纺织学报, 2020, 41(03): 160-167.
[5] 景军锋, 张君扬, 张缓缓, 苏泽斌. 梯度空间下的丝饼表面缺陷检测[J]. 纺织学报, 2020, 41(02): 44-51.
[6] 张铮烨, 辛斌杰, 邓娜, 陈阳, 邢文宇. 基于边界跟踪测量麻纤维横截面参数的算法研究与应用[J]. 纺织学报, 2020, 41(02): 39-43.
[7] 肖志涛, 郭永敏, 耿磊, 吴骏, 张芳, 王雯, 刘彦北. 基于超声相控阵的机织层合复合薄板试件内部缺陷检测方法[J]. 纺织学报, 2019, 40(11): 81-87.
[8] 吴义伦, 李忠健, 潘如如, 高卫东, 张宁. 应用色纺纱图像的纬编针织物外观模拟[J]. 纺织学报, 2019, 40(06): 111-116.
[9] 朱浩, 丁辉, 尚媛园, 邵珠宏. 多纹理分级融合的织物缺陷检测算法[J]. 纺织学报, 2019, 40(06): 117-124.
[10] 黄嘉俊, 柯薇, 王静, 邓中民. 基于计算机视觉的牛仔服装色差检测评级系统[J]. 纺织学报, 2019, 40(05): 163-169.
[11] 王文帝, 辛斌杰, 邓娜, 李佳平, 刘宁娟. 单一视角下自适应阈值法的纱线毛羽识别及其应用[J]. 纺织学报, 2019, 40(05): 150-156.
[12] 巫莹柱 单颖法 黄伯熹 林广茂 梁家豪 张晓利. 聚对苯二甲酸丙二醇酯与聚对苯二甲酸丁二醇酯混纺纤维的智能识别[J]. 纺织学报, 2018, 39(09): 169-175.
[13] 陆奕辰 王蕾 唐千惠 潘如如 高卫东. 应用图像处理的纱线黑板毛羽量检测与评价[J]. 纺织学报, 2018, 39(08): 144-149.
[14] 王雯雯 高畅 刘基宏. 应用卷积神经网络的细纱断纱锭位识别[J]. 纺织学报, 2018, 39(06): 136-141.
[15] 何晓昀 韦平 张林 邓斌攸 潘云峰 苏真伟. 基于深度学习的籽棉中异性纤维检测方法[J]. 纺织学报, 2018, 39(06): 131-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!