纺织学报 ›› 2019, Vol. 40 ›› Issue (05): 78-83.doi: 10.13475/j.fzxb.20180200806

• 染整与化学品 • 上一篇    下一篇

微滴喷射化学沉积工艺条件对成形银导线的影响

肖渊(), 尹博, 李岚馨, 刘欢欢   

  1. 西安工程大学 机电工程学院, 陕西 西安 710048
  • 收稿日期:2018-01-30 修回日期:2019-01-21 出版日期:2019-05-15 发布日期:2019-05-21
  • 作者简介:肖渊(1975—),男,教授,博士。主要研究方向为微滴喷射技术、机电控制技术。E-mail: xiaoyuanjidian@xpu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51475350)

Influence of process conditions on silver conductive lines by micro-droplet jet printing solution reaction

XIAO Yuan(), YIN Bo, LI Lanxin, LIU Huanhuan   

  1. College of Mechanical & Electrical Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2018-01-30 Revised:2019-01-21 Online:2019-05-15 Published:2019-05-21

摘要:

为制备具有良好导电特性的柔性线路,研究了织物表面微滴喷射打印化学沉积的工艺条件变化对成形导电线路性能的影响。利用开发的气动式双喷头微滴按需喷射系统,通过改变反应溶液中硝酸银和抗坏血酸的用量、分散剂聚乙烯吡络烷酮(PVP)的浓度及反应体系的pH值,在系统稳定喷射条件下打印导电线路,对不同条件下成形导线的微观形貌进行观察,并测试成形导线的方阻。结果表明:在稳定喷射条件下,当硝酸银和抗坏血酸用量分别为50%和30%(质量体积比)时,反应生成的银导线平均方阻为2.92 Ω/□,标准差为0.46 Ω/□;分散剂PVP在银导线反应过程中具有控制银微粒大小和改善粒子间团聚的作用,且当分散剂PVP添加量为6%时,银颗粒成“米粒”状,颗粒间连接成网状结构;不同pH值条件下反应体系的反应情况不同,当反应体系的pH值为2~3时,反应生成银粒子较多,且颗粒形状规则统一。

关键词: 微滴喷射, 液相还原法, 导电线路, 微观形貌, 导电性能

Abstract:

In order to prepare flexible circuit with good electrical conductivity, the influence of the process conditions of droplet jet printing forming the chemical deposition on the performance of the formed conductive circuit was investigated. The double nozzle pneumatic micro-droplet injection system was applied by changing the concentration of two kinds of reaction solution, the concentration of PVP and the pH of the solution. Under the stable system to proceed wire jet printing, the microstructure produced under different conditions were observed and the square resistance were measured. The results shows that when the silver nitrate concentration and the ascorbic acid concentration are 50% and 30%, respectively, the average square resistance of the silver wire is 2.92 Ω/□, and the standard deviation is 0.46 Ω/□, PVP has the effect of controlling the size of silver particles and improving the agglomeration between particles during the reaction of silver conductive lines. When PVP content is 6%, the scanning electron microscopy images show that the silver particles are rice-like, and the connection between particles present a network structure. The reaction conditions vary with pH value, and when the pH value is 2 to 3, more silver particles are prepared and the grain shape is uniform.

Key words: micro-droplet ejection, liquid reduction method, conductive line, microstructure, conductive property

中图分类号: 

  • TH16

图1

气动式双喷头微滴喷射系统"

表1

硝酸银微滴喷射工艺参数"

微滴
类型
供气压力/
MPa
脉冲宽度/
ms
喷射
频率/Hz
球阀开口/
(°)
硝酸银 0.03 1.953 1 45
抗坏血酸 0.04 1.953 1 25

图2

硝酸银微滴喷射过程"

图3

抗坏血酸微滴喷射过程"

表2

导电线路喷射打印反应体系参数变化"

序号 组合质量体积比/% PVP质量体积比/
%
pH值
硝酸银 抗环血酸
30 18
1 50 30 0 2~3
70 42
90 54
0
2
2 50 30 4 2~3
6
8
2~3
3 50 30 0 8
10

图4

不同工艺条件下喷射打印成线"

图5

不同质量体积比硝酸银和抗坏血酸反应下基板上沉积导电线路形貌照片"

图6

4组导电线路方阻"

图7

添加不同质量体积比PVP基板上沉积导电线路SEM照片"

图8

不同pH值反应下基板上沉积导电线路SEM照片"

[1] AGRAWAL P, BRINKS G J, GOOIJER H. Functional inkjet printing on textiles: challenges and opportunities: Onderzoek voor een vitale regio[Z]. Deventer: Saxion Kenniscentrum Design & Technologies, 2012: 1-5.
[2] 包悦. 超微细柔性透明导电电路制作方法研究[D]. 苏州:苏州大学, 2015: 1-20.
BAO Yue. Study on the fabrication method of ultra fine flexible transparent conductive circuit[D]. Suzhou: Soochow University, 2015: 1-20.
[3] GALVAN R S. Intelligent electronic system for previously sensing the dryness condition of a textile clothes load in an automatic electronic clothes dryer machine: 14/688,203[P]. 2016-03-17.
[4] GRIMMELSMANN N, MARTENS Y, SCHAL P, et al. Mechanical and electrical contacting of electronic components on textiles by 3D Printing[J]. Procedia Technology, 2016,26:66-71.
[5] WANG Y, GUO H, CHEN J, et al. Based inkjet-printed flexible electronic circuits[J]. ACS applied materials & interfaces, 2016,8(39):26112-26118.
doi: 10.1021/acsami.6b06704 pmid: 27582243
[6] HSU H C, WU S J, FU C C, et al. Cutting PCB with a 532nm DPSS green laser [C]//Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT).Taiwan: IEEE, 2014: 339-341.
[7] 肖渊, 刘金玲, 申松, 等. 织物表面微滴喷射打印沉积过程试验研究[J]. 纺织学报, 2017,38(5):139-144.
XIAO Yuan, LIU Jinling, SHEN Song, et al. Experimental research on droplet spray printing and deposition of fabric surface[J]. Journal of Textile Research, 2017,38(5):139-144.
[8] ALBRECHT A, RIVADENYRA A, ABDELLAH A, et al. Inkjet printing and photonic sintering of silver and copper oxide nanoparticles for ultra-low-cost conductive patterns[J]. Journal of Materials Chemistry C, 2016,4(16):3546-3554.
[9] KAWAHARA Y, HODGES S, COOK B S, et al. Instant inkjet circuits: lab-based inkjet printing to support rapid prototyping of UbiComp devices [C]//Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing. Switzerland: ACM, 2013: 363-372.
[10] 李文杰, 苏现伐, 孙剑辉. 印制电路板废水的水质特点与排放管理[J]. 工业用水与废水, 2012,43(4):7-10.
LI Wenjie, SU Xianfa, SUN Jianhui. Water quality characteristics and emission management of printed circuit board wastewater[J]. Industrial Water and Wastewater, 2012,43(4):7-10.
[11] MYLLYMAKI S, PUTAALA J, HANNU J, et al. RF measurements to pinpoint defects in inkjet-printed, thermally and mechanically stressed coplanar waveguides[J]. Microelectronics Reliability, 2016,65:142-150.
[12] 薛光怀, 贺永, 傅建中, 等. 压电式喷头的微滴喷射行为及其影响因素[J]. 光学精密工程, 2014,22(8):2166-2172.
XUE Guanghuai, HE Yong, FU Jianzhong, et al. Micro-droplet ejection behavior of piezoelectric nozzle and its influencing factors[J]. Optical Precision Engineering, 2014,22(8):2166-2172.
[13] 杨利军, 陆宝春, 朱晓阳, 等. 数字化微喷射技术制备聚合物薄膜电阻[J]. 光学精密工程, 2015,23(6):1598-1604.
YANG Lijun, LU Baochun, ZHU Xiaoyang, et al. Preparation of polymer film resistance by digital micro-jet technology[J]. Optical Precision Engineering, 2015,23(6):1598-1604.
[14] 刘赵淼, 杨洋, 杜宇, 等. 微流控液滴技术及其应用的研究进展[J]. 分析化学, 2017,45(2):282-296.
LIU Zhaomiao, YANG Yang, DU Yu, et al. Research progress of microfluidic droplet technology and its applications[J]. Analytical Chemistry, 2017,45(2):282-296.
[15] 谢丹, 张鸿海, 舒霞云, 等. 气动膜片式微滴喷射装置理论分析与实验研究[J]. 中国机械工程, 2012,23(14):1732-1737.
XIE Dan, ZHANG Honghai, SHU Xiayun, et al. Theoretical analysis and experimental study of pneumatic membrane droplet jet device[J]. China Mechanical Engineering, 2012,23(14):1732-1737.
[16] 房汝建, 侯丽雅, 章维一, 等. 微喷射技术制备的化学镀金属银线微结构[J].微细加工技术, 2006(3):49-53.
FANG Rujian, HOU Liya, ZHANG Weiyi, et al. Microstructure of electroless plating silver wire prepared by microjet technology[J]. Microfabrication Technology, 2006 (3):49-53.
[17] 赵斌, 马海燕, 张宗涛, 等. 以抗坏血酸为还原剂的不同粒径的银超微粒子的制备[J].化学世界, 1996(5):236-239.
ZHAO Bin, MA Haiyan, ZHANG Zongtao, et al. Preparation of silver ultrafine particles with different particle sizes with ascorbic acid as reducing agent[J].Chemical World, 1996(5):236-239.
[18] 谢炜, 郑亚亚, 匡加才, 等. 以聚乙烯吡络烷酮为分散剂制备球形银粉的研究[J]. 粉末冶金工业, 2015,25(1):23-27.
XIE Wei, ZHENG Yaya, KUANG Jiacai, et al. Study on preparation of spherical silver powder with polyvinylpyrrolidone as dispersant[J]. Powder Metallurgy Industry, 2015,25(1):23-27.
[19] 肖渊, 黄亚超, 蒋龙, 等. 喷射打印和化学沉积成型微细电路中微滴可控喷射研究[J]. 中国机械工程, 2015,26(13):1806-1810.
XIAO Yuan, HUANG Yachao, JIANG Long, et al. Study on controlled jet irradiation in spray print and chemical deposition molding microfabrication[J]. China Mechanical Engineering, 2015,26(13):1806-1810.
[20] 赵斌, 姚明懿, 文东, 等. 高分子保护的银超微粒子分散液的制备及导电性[J]. 华东理工大学学报(自然科学版), 1995,21(4):428-434.
ZHAO Bin, YAO Mingyi, WEN Dong, et al. Preparation and conductivity of polymeric protective silver ultrafine particulate dispersion[J]. Journal of East China University of Science and Technology (Natural Science Edition); 1995,21(4):428-434.
[21] 刘书祯, 谈定生, 吕超君. 抗坏血酸还原制备微细银粉的研究[J]. 粉末冶金工业, 2009,19(2):5-9.
LIU Shuzhen, TAN Dingsheng, LÜ Chaojun. Research on preparation of fine silver powder by ascorbic acid reduction[J]. Powder Metallurgy Industry, 2009,19(2):5-9.
[1] 张佳慧, 王建萍. 圆形纬编针织物电极导电性能及电阻理论模型构建[J]. 纺织学报, 2020, 41(03): 56-61.
[2] 陈莹, 周爽, 韦恬静, 方浩霞, 李宇菲. 聚吡咯复合织物的软模板法制备及其性能[J]. 纺织学报, 2019, 40(12): 93-97.
[3] 朱金铭, 钱建华, 孙丽颖, 李正平, 彭慧敏. 用高长径比银纳米线制备功能性复合涤纶织物及其性能[J]. 纺织学报, 2019, 40(11): 113-118.
[4] 姜珊, 万爱兰, 缪旭红, 蒋高明, 马丕波, 陈晴. 等离子体处理对聚吡咯/涤纶复合导电纱线性能的影响[J]. 纺织学报, 2019, 40(08): 95-100.
[5] 王文聪, 范静静, 丁超, 王鸿博. 多功能复合导电毛织物的制备及其性能[J]. 纺织学报, 2019, 40(08): 117-123.
[6] 曹机良, 徐李聪, 孟春丽, 李晓春. 紫外光固化石墨烯涂层棉织物的导电性能[J]. 纺织学报, 2019, 40(02): 135-140.
[7] 肖渊 刘金玲 申松 陈兰. 织物表面微滴喷射打印沉积过程试验研究[J]. 纺织学报, 2017, 38(05): 139-144.
[8] 王云燕 陈慰来 王金凤. 碳黑导电纤维的导电性能[J]. 纺织学报, 2017, 38(05): 19-24.
[9] 洪剑寒 韩潇 陈建广 彭蓓福 苏敏 惠林 梁广明. 聚对苯二甲酸丙二醇酯/聚苯胺复合导电纱的电学与力学性能[J]. 纺织学报, 2017, 38(02): 40-46.
[10] 蔡倩文 王金凤 陈慰来. 纬编针织柔性传感器结构及其导电性能[J]. 纺织学报, 2016, 37(06): 48-53.
[11] 李青 苗赛男 邢铁玲 陈国强. 转移印花增稠剂的流变性与微观形貌[J]. 纺织学报, 2015, 36(09): 75-81.
[12] 孟灵灵, 魏取福, 黄新民. 氩气压强对涤纶织物表面溅射银膜特性的影响[J]. 纺织学报, 2012, 33(4): 29-33.
[13] 狄剑锋;唐俊云. 聚苯胺/锦纶/氨纶复合导电织物的制备工艺[J]. 纺织学报, 2011, 32(4): 43-47.
[14] 金欣;肖长发;俞传坤;谢淳. 涂覆型PANI/PA6纤维导电性能[J]. 纺织学报, 2010, 31(10): 1-5.
[15] 伏广伟;王瑞;倪玉婷. 有机导电短纤维混纺纱的导电和抗静电性能[J]. 纺织学报, 2009, 30(06): 34-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!