纺织学报 ›› 2019, Vol. 40 ›› Issue (05): 53-58.doi: 10.13475/j.fzxb.20180503006

• 纺织工程 • 上一篇    下一篇

基于主成分分析的智能复合材料结构损伤类型识别

万莉1(), 贡丽英2, 贾敏瑞2   

  1. 1.天津医科大学 教务处, 天津 300070
    2.天津工业大学 信息化中心, 天津 300387
  • 收稿日期:2018-05-14 修回日期:2019-02-12 出版日期:2019-05-15 发布日期:2019-05-21
  • 作者简介:万莉(1990—), 女, 助教,硕士。主要研究方向为三维复合材料计算机的检测技术等。E-mail: wanli@tmu.edu.cn
  • 基金资助:
    教育部博士点基金课题项目(200800580004);天津市教委社会重大项目(2017JW2D28)

Structural damage identification of intelligent composite materials based on principal component analysis

WAN Li1(), GONG Liying2, JIA Minrui2   

  1. 1. Academic Affairs Office, Tianjin Medical University, Tianjin 300070, China
    2. Information Center, Tianjin Polytechnic University, Tianjin 300387, China
  • Received:2018-05-14 Revised:2019-02-12 Online:2019-05-15 Published:2019-05-21

摘要:

针对三维编织复合材料制件结构状态监控的关键问题,提出了基于三维六向编织工艺将碳纳米管纱线嵌入到整体复合材料制件中,构建三维空间结构的智能复合材料的方法,利用损伤指数实现了对智能复合材料制件内部损伤类型的识别,并分析了4组三维六向编织智能复合材料制件的损伤指数表现特征。结果表明:综合损伤指数优于其他3种损伤指数,综合损伤指数可精确识别制件内部损伤的类型;对于三维编织复合材料制件内部空隙类微小损伤,综合损伤指数监测值小于100;对于制件内部裂纹的损伤,综合损伤指数监测值位于300~500;当综合损伤指数监测值大于600时,可判断为试件存在大裂口损伤;基于损伤指数可计算制件内部损伤大小,精度可达到0.073 mm。

关键词: 智能编织复合材料, 三维六向编织, 主成分分析, 碳纳米管线传感器, 损伤指数

Abstract:

Aiming at the key problems in monitoring the structural state of three-dimensional braided composites, a method to build three-dimensional space-structured intelligent composite material was developed by embedding carbon nanotube yarns into the overall composites based on the three-dimensional six-directional braiding process. The damage index was adopte to realize the identification of the internal damage type of the intelligent composite specimen. For the internal damage of three-dimensional six-directional braided composite materials, four damage index performance characteristics were analyzed. Experiments show that combined damage index is better than the other three damage indexes and combined damage index can accurately identify the type of damage within the specimen. The three-dimensional braided composite material has small internal void damage and the combined damage index is less than 100. For internal crack damage of the composite specimen, combined damage index monitoring value is 300-500. When the combined damage index monitoring value is greater than 600, it can be judged that a large crack damage exists in the test specimens. Based on the damage index, the internal damage of the specimen can be calculated and the precision can reach 0.073 mm.

Key words: intelligent braided composite, three-dimensional six-directional braiding, principal component analysis, carbon nanotube yarn sensor, damage index

中图分类号: 

  • TS101.2

图1

三维编织复合材料制件损伤监测示意图"

图2

三维编织机示意图"

图3

三维六向携纱器排布规律示意图"

图4

嵌入碳纳米管纱线的三维六向复合材料预制件"

图5

基于PCA的复合材料内部损伤监测流程图"

表1

三维编织复合材料试件参数"

编号 平均编织角/(°) 纤维体积含量/% 密度/(g·cm-3)
1# 30.4 57.1 1.55
2# 32.8 56.5 1.73
3# 29.5 52.1 1.64
4# 38.7 54.3 1.54

图6

试件样本"

图7

T2损伤指数图"

图8

Q损伤指数图"

图9

Phi损伤指数图"

图10

I损伤指数图"

[1] 刘振国, 亚纪轩, 林强, 等. 三维全五向编织复合材料细观结构实验分析[J]. 北京航空航天大学学报, 2016,42(6):211-216.
LIU Zhenguo, YA Jixuan, LIN Qiang, et al. Experimental analysis on micro-structure of three-dimensional full five-directional braided composites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016,42(6):211-216.
[2] 张迪, 郑锡涛, 杨超. 三维编织复合材料损伤容限性能试验[J]. 复合材料学报, 2016,33(5):1048-1054.
ZHANG Di, ZHENG Xitao, YANG Chao. Damage tolerance property tests of 3D braided composites[J]. Acta Materiae Compositae Sinica, 2016,33(5):1048-1054.
[3] ZHANG Diantang, CHEN Li, SUN Ying. Meso-scale progressive damage of 3D five-directional braided composites under transverse compression[J]. Journal of Composite Materials, 2016,50(24):3345-3361.
[4] 朱虹. 天津工业大学助力“神舟十一”飞天[EB/OL]. , http://tj.people.com.cn/n2/2016/1018/c375366-29159662.html, 2016-10-18/2017-12-22.
ZHU Hong. ZHU Hong. Tianjin Polytechnic University helps ″Shenzhou Eleven″ flying[EB/OL]. http://tj.people.com.cn/n2/2016/1018/c375366-29159662.html, 2016-10-18/2017-12-22.
[5] 陈雪峰, 杨志勃, 田绍华, 等. 复合材料结构损伤识别与健康监测展望[J]. 振动、测试与诊断, 2018,38(1):1-10.
CHEN Xuefeng, YANG Zhibo, TIAN Shaohua, et al. A review of the damage detection and health monitoring for composite structures[J]. Journal of Vibration,Measurement & Diagnosis, 2018,38(1):1-10.
[6] 梁军, 杜善义, 韩杰才. 含夹杂和微裂纹复合材料的损伤演化和分析[J]. 固体力学学报, 1996,17(4):296-302.
LIANG Jun, DU Shanyi, HAN Jiecai. Damage evolution and analysis of composite materials with inclusions and microcracks[J]. Acta Mechanica Solida Sinica, 1996,17(4):296-302.
[7] BANAARA R P, CHAN T H T, THAMBIRATNAM D P. Structural damage detection method using frequency response functions[J]. Structural Health Monitoring, 2014,13(4):418-429.
[8] 黄红梅, 袁缜芳. 基于光纤Bragg光栅传感器的疲劳裂纹扩展的研究[J]. 光电子激光, 2009,20(4):447-450.
HUANG Hongmei, YUAN Shenfang. Research on the fatigue crack propagation using fiber Bragg grating sensors[J]. Journal of Optoelectronics Laser, 2009,20(4):447-450.
[9] 万振凯, 李嘉禄, 李怡. 光纤布拉格光栅在复合材料连续状态健康监测中的应用[J]. 纺织学报, 2011,32(8):57-61.
WAN Zhenkai, LI Jialu, LI Yi. Application of fiber Bragg grating to continuous monitoring health state of three dimensional braided composites[J]. Journal of Textile Research, 2011,32(8):57-61.
[10] 万莉, 郭建民, 马永军. 三维编织复合材料弯曲承载下嵌入碳纳米线的特性分析[J]. 纺织学报, 2016,37(1):57-63.
WAN Li, GUO Jianmin, MA Yongjun. Bending load characteristic of carbon nano wires embedded into three-dimensional braided composite[J]. Journal of Textile Research, 2016,37(1):57-63.
[11] 万振凯, 贡丽英, 万莉. 基于损伤指数的三维编织复合材料结构损伤评估[J]. 纺织学报, 2017,38(5):69-74.
WAN Zhenkai, GONG Liying, WAN Li. Structural damage evaluation of three dimensional braided composite based on damage index[J]. Journal of Textile Research, 2017,38(5):69-74.
[1] 张晓侠, 刘凤坤, 买巍, 马崇启. 基于BP 神经网络及其改进算法的织机效率预测[J]. 纺织学报, 2020, 41(08): 121-127.
[2] 李鹏, 万振凯, 贾敏瑞. 基于碳纳米管纱线扭电能的复合材料损伤监测[J]. 纺织学报, 2020, 41(04): 58-63.
[3] 万振凯 李鹏 贾敏瑞 贡丽英 张志钢. 大尺寸三维编织复合材料结构损伤指数特征[J]. 纺织学报, 2018, 39(09): 65-70.
[4] 张陆佳 林兰天 陈春敏 申炎仃 高琮. 基于主成分分析的纤维拉伸断裂声发射信号识别[J]. 纺织学报, 2018, 39(01): 19-24.
[5] 万振凯 张志刚 贾敏瑞 包玮琛 董卿霞. 基于碳纳米线传感器的三维六向编织复合材料内部损伤定位[J]. 纺织学报, 2017, 38(08): 68-74.
[6] 夏凤勤 毋戈 谢昊洋 钟跃崎. 基于人体纵截面特征曲线的体型分类[J]. 纺织学报, 2017, 38(06): 86-91.
[7] 万振凯 贡丽英 万莉. 基于损伤指数的三维编织复合材料结构损伤评估[J]. 纺织学报, 2017, 38(05): 69-74.
[8] 李东 万贤福 汪军. 采用傅里叶描述子和支持向量机的服装款式识别方法[J]. 纺织学报, 2017, 38(05): 122-127.
[9] 王玲 杨以雄 陈炜. 服装工序相似性标准工时预测[J]. 纺织学报, 2016, 37(11): 114-119.
[10] 苟捷 刘建立 高卫东. 应用主成分分析的原棉可纺性指数构建[J]. 纺织学报, 2015, 36(08): 16-21.
[11] 金关秀 应伟伟 雷新 从明芳 祝成炎. 纺粘非织造布孔隙形状的定量分析[J]. 纺织学报, 2015, 36(08): 56-61.
[12] 夏明 王文玲 张文斌. 人体特征断面形状拟合及围度尺寸预测[J]. 纺织学报, 2014, 35(8): 76-0.
[13] 钟智丽 王玉新. 聚丙烯长丝/芳纶包缠纱捻度的优化[J]. 纺织学报, 2014, 35(6): 40-0.
[14] 耿艳蕾;崔运花;程隆棣;黄淑韵. 不同结构竹浆纤维纱线性能测试及分类[J]. 纺织学报, 2010, 31(4): 35-38.
[15] 刘贵;于伟东.. 主成分分析的BP神经网络在精毛纺粗纱工序中的应用[J]. 纺织学报, 2008, 29(9): 34-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!