纺织学报 ›› 2019, Vol. 40 ›› Issue (05): 131-135.doi: 10.13475/j.fzxb.20180403505

• 机械与器材 • 上一篇    下一篇

喷气涡流纺中纤维运动的三维数值模拟

郭臻1,2, 李新荣1,2(), 卜兆宁1,2, 袁龙超1,2   

  1. 1.天津工业大学 机械工程学院, 天津 300387
    2.天津市现代机电装备技术重点实验室, 天津 300387
  • 收稿日期:2018-04-16 修回日期:2019-01-24 出版日期:2019-05-15 发布日期:2019-05-21
  • 通讯作者: 李新荣
  • 作者简介:郭臻(1991—),男,硕士生。主要研究方向为新型纺织机械设计及自动化。
  • 基金资助:
    国家重点基础研究发展计划项目(973计划2010CB334711)

Three-dimensional numerical simulation of fiber movement in nozzle of murata vortex spinning

GUO Zhen1,2, LI Xinrong1,2(), BU Zhaoning1,2, YUAN Longchao1,2   

  1. 1. School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
    2. Key Laboratory of Modern Mechanical and Electrical Equipment Technology, Tianjin 300387, China
  • Received:2018-04-16 Revised:2019-01-24 Online:2019-05-15 Published:2019-05-21
  • Contact: LI Xinrong

摘要:

针对目前模拟纤维在喷气涡流纺喷嘴流场中运动情况,常将纤维模型简化或者建立二维模型,无法描述纤维在三维空间内的变形这个问题,建立了纤维运动三维模型,并合理设置纤维属性,使纤维运动模型更加符合实际状态。结合任意拉格朗日-欧拉法,数值模拟求解了纤维在喷气涡流纺喷嘴流场中的运动问题,并分析了纤维的运动与变形情况。结果表明:加捻室的负压导致喷嘴入口的气流流动,纤维尾端在气流中的运动十分复杂,先在乱流的影响下小幅波动,然后随时间推进振动频率和振动幅度都是先增大后减小;在流场的影响下,纤维尾端从纱线中被剥离出来,并呈螺旋形式向前行进形成包缠纤维。

关键词: 喷气涡流纺, 纤维运动三维模型, 流固耦合, 数值模拟

Abstract:

The simplification of the fiber model or establishment of a two-dimensional model to simulate the movement of fibers in the flow field of murata vortex spinning nozzle could not describe the deformation of fibers in three-dimensional space. In order to solve this problem, a three-dimensional model of fibers was established, and the properties of fibers were reasonably set to make the model more accurate. Combining with arbitrary Lagrangian-Eulerian method, the motion of fiber in the flow field inside the jet vortex spinning nozzle was solved under the condition of fluid-structure interaction, and the movement and deformation of the fiber in the flow field were obtained. The results shown that the negative pressure in the twisting chamber causes the air flow at the nozzle inlet. The movement of the fiber tail in the gas stream is quite complex, first under the influence of turbulence, small fluctuations occur. Then, as time advances, the vibration frequency and vibration amplitude both increase first and then decrease. Under the influence of the flow field, the fiber tail is peeled off from the yarn and spirals forward to form the wrapping fiber.

Key words: murata vortex spinning, three-dimensional model, fluid-structure interaction, numerical simulation

中图分类号: 

  • TS103

图1

有限元纤维模型"

图2

计算区域"

图3

流固耦合模型网格划分"

表1

纤维的参数"

密度/(kg·m-3) 弹性模量/Pa 泊松比 直径/μm 长度/mm
1.54×103 8×109 0 20 12

图4

随时间推进纤维的运动情况"

图5

建立坐标系"

图6

纤维尾端运动轨迹图"

图7

纤维尾端运动"

[1] GULDEMET B, WILLIAM O. Spun yarn vs. air-jet spun yarn[J]. AUTEX Research Journal, 2003,3(3):96-101.
[2] ZOU Z, CHENG L, XI B, et al. Investigation of fiber trajectory affected by some parameter variables in vortex spun yarn[J]. Textile Research Journal, 2015,85(2):180-187.
[3] LI Meiling, YU Chongwen, SHANG Shanshan. Effect of the distance between guided needle and cone body on properties of vortex spun yarn[J]. Advanced Materials Research, 2014,104(8):575-578.
[4] LI Meiling. Effect of the distance between jet orifice and nozzle Alex on properties of vortex spun yarn[J]. Journal of the Textile Institute, 2016,107(1):81-90.
[5] LI Meiling, YU Chongwen, SHANG Shanshan. Effect of vortex tube structure on yarn quality in vortex spinning machine[J]. Fibers and Polymers, 2014,15(8):1786-1791.
[6] ZOU Zhuanyong, LIU Shirui, ZHENG Shaoming, et al. Numerical computation of a flow field affected by the process parameters of murata vortex spinning[J]. Fibres & Textile in Eastern Europe, 2010,18(2):35-39.
[7] CHIBA K, KOMATSU T. Numerical simulation for orientation of thin disk particles in a newtonian flow through a L-shape channel[J]. Journal of Textile Engineering, 2007,53(53):31-35.
[8] LIN J Z, GAO Z Y, ZHOU K, et al. Mathematical modeling of turbulent fiber suspension and successive iteration solution in the channel flow[J]. Applied Mathematical Modelling, 2006,30(9):1010-1020.
[9] ZENG Y C, YU C W. Mixed euler-lagrange approach to modeling fiber motion in high speed air flow[J]. Applied Mathematical Modelling, 2005,29(3):253-261.
[10] PEI Zeguang, YU Chongwen. Investigation on the dynamic behavior of the fiber in the vortex spinning nozzle and effects of some nozzle structure para-meters[J]. Textile Research Journal, 2014,85(2):180-187.
[11] 裴泽光, 郁崇文. 喷气涡流纺中纤维运动的数值模拟[J]. 东华大学学报(自然科学版), 2010,36(6):615-621.
PEI Zeguang, YU Chongwen. Numerical simulation of fiber motion in jet swirl spinning[J]. Journal of Donghua University(Natural Science Edition), 2010,36(6):615-621.
[12] 郭会芬. 喷气纺纱喷嘴内三维旋转气流场及柔性纤维运动的研究[D]. 上海: 东华大学, 2009: 10-15.
GUO Huifen. Study on three-dimensional swirling airflow and motion of flexible fiber in air-jet spinning nozzle[D]. Shanghai: Donghua University, 2009: 10-15.
[13] SADYKAVA F K. The poisson's ratio of textile fibers and yarns[J]. Fiber Chemistry, 1972,3(2):180-183.
[1] 初曦, 邱华. 不同压强条件下环锭旋流喷嘴内部流场模拟[J]. 纺织学报, 2020, 41(09): 33-38.
[2] 刘宜胜, 徐光逸. 斜吹气流入射角对纱线折入的影响[J]. 纺织学报, 2020, 41(07): 72-77.
[3] 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用 [J]. 纺织学报, 2020, 41(01): 139-144.
[4] 李斯湖, 沈敏, 白聪, 陈亮. 喷气织机辅助喷嘴结构参数对流场特性的影响[J]. 纺织学报, 2019, 40(11): 161-167.
[5] 陈旭, 吴炳洋, 范滢, 杨木生. 蓄热调温织物低温防护过程的数值模拟[J]. 纺织学报, 2019, 40(07): 163-168.
[6] 郑振荣, 智伟, 韩晨晨, 赵晓明, 裴晓园. 碳纤维织物在热流冲击下的热传递数值模拟[J]. 纺织学报, 2019, 40(06): 38-43.
[7] 曹海建, 陈红霞, 黄晓梅. 玻璃纤维/环氧树脂基夹芯材料侧压性能数值模拟[J]. 纺织学报, 2019, 40(05): 59-63.
[8] 何建, 裴泽光, 周健, 熊祥章, 吕海辰. 喷气涡流纺金属丝包芯纱成纱过程的在线观测与分析[J]. 纺织学报, 2019, 40(05): 136-143.
[9] 广少博, 金玉珍, 祝晓晨. 喷气织机延伸喷嘴内气流场特性分析[J]. 纺织学报, 2019, 40(04): 135-139.
[10] 刘倩楠, 张涵, 刘新金, 苏旭中. 基于ABAQUS的三原组织机织物拉伸力学性能模拟[J]. 纺织学报, 2019, 40(04): 44-50.
[11] 尚珊珊, 郁崇文, 杨建平, 钱希茜. 喷气涡流纺纺纱过程中的气流场数值模拟[J]. 纺织学报, 2019, 40(03): 160-167.
[12] 林燕燕, 邹专勇, 陈玉香, 杨艳秋. 喷气涡流纺纱线热黏合增强工艺[J]. 纺织学报, 2019, 40(02): 58-62.
[13] 史倩倩, 高备, 林惠婷, 张玉泽, 汪军. 传统型与双喂给转杯纺纺纱器及其成纱性能对比[J]. 纺织学报, 2019, 40(02): 63-68.
[14] 姚江薇 邹专勇 闫琳琳 卫国 唐佩君. 喷气涡流纺纱线拉伸断裂强力预测模型构建与验证[J]. 纺织学报, 2018, 39(10): 32-37.
[15] 闫琳琳 邹专勇 卫国 程隆棣. 基于螺旋导引槽空心锭子的喷气涡流纺加捻腔流场模拟[J]. 纺织学报, 2018, 39(09): 139-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!