纺织学报 ›› 2019, Vol. 40 ›› Issue (05): 131-135.doi: 10.13475/j.fzxb.20180403505
郭臻1,2, 李新荣1,2(), 卜兆宁1,2, 袁龙超1,2
GUO Zhen1,2, LI Xinrong1,2(), BU Zhaoning1,2, YUAN Longchao1,2
摘要:
针对目前模拟纤维在喷气涡流纺喷嘴流场中运动情况,常将纤维模型简化或者建立二维模型,无法描述纤维在三维空间内的变形这个问题,建立了纤维运动三维模型,并合理设置纤维属性,使纤维运动模型更加符合实际状态。结合任意拉格朗日-欧拉法,数值模拟求解了纤维在喷气涡流纺喷嘴流场中的运动问题,并分析了纤维的运动与变形情况。结果表明:加捻室的负压导致喷嘴入口的气流流动,纤维尾端在气流中的运动十分复杂,先在乱流的影响下小幅波动,然后随时间推进振动频率和振动幅度都是先增大后减小;在流场的影响下,纤维尾端从纱线中被剥离出来,并呈螺旋形式向前行进形成包缠纤维。
中图分类号:
[1] | GULDEMET B, WILLIAM O. Spun yarn vs. air-jet spun yarn[J]. AUTEX Research Journal, 2003,3(3):96-101. |
[2] | ZOU Z, CHENG L, XI B, et al. Investigation of fiber trajectory affected by some parameter variables in vortex spun yarn[J]. Textile Research Journal, 2015,85(2):180-187. |
[3] | LI Meiling, YU Chongwen, SHANG Shanshan. Effect of the distance between guided needle and cone body on properties of vortex spun yarn[J]. Advanced Materials Research, 2014,104(8):575-578. |
[4] | LI Meiling. Effect of the distance between jet orifice and nozzle Alex on properties of vortex spun yarn[J]. Journal of the Textile Institute, 2016,107(1):81-90. |
[5] | LI Meiling, YU Chongwen, SHANG Shanshan. Effect of vortex tube structure on yarn quality in vortex spinning machine[J]. Fibers and Polymers, 2014,15(8):1786-1791. |
[6] | ZOU Zhuanyong, LIU Shirui, ZHENG Shaoming, et al. Numerical computation of a flow field affected by the process parameters of murata vortex spinning[J]. Fibres & Textile in Eastern Europe, 2010,18(2):35-39. |
[7] | CHIBA K, KOMATSU T. Numerical simulation for orientation of thin disk particles in a newtonian flow through a L-shape channel[J]. Journal of Textile Engineering, 2007,53(53):31-35. |
[8] | LIN J Z, GAO Z Y, ZHOU K, et al. Mathematical modeling of turbulent fiber suspension and successive iteration solution in the channel flow[J]. Applied Mathematical Modelling, 2006,30(9):1010-1020. |
[9] | ZENG Y C, YU C W. Mixed euler-lagrange approach to modeling fiber motion in high speed air flow[J]. Applied Mathematical Modelling, 2005,29(3):253-261. |
[10] | PEI Zeguang, YU Chongwen. Investigation on the dynamic behavior of the fiber in the vortex spinning nozzle and effects of some nozzle structure para-meters[J]. Textile Research Journal, 2014,85(2):180-187. |
[11] | 裴泽光, 郁崇文. 喷气涡流纺中纤维运动的数值模拟[J]. 东华大学学报(自然科学版), 2010,36(6):615-621. |
PEI Zeguang, YU Chongwen. Numerical simulation of fiber motion in jet swirl spinning[J]. Journal of Donghua University(Natural Science Edition), 2010,36(6):615-621. | |
[12] | 郭会芬. 喷气纺纱喷嘴内三维旋转气流场及柔性纤维运动的研究[D]. 上海: 东华大学, 2009: 10-15. |
GUO Huifen. Study on three-dimensional swirling airflow and motion of flexible fiber in air-jet spinning nozzle[D]. Shanghai: Donghua University, 2009: 10-15. | |
[13] | SADYKAVA F K. The poisson's ratio of textile fibers and yarns[J]. Fiber Chemistry, 1972,3(2):180-183. |
[1] | 初曦, 邱华. 不同压强条件下环锭旋流喷嘴内部流场模拟[J]. 纺织学报, 2020, 41(09): 33-38. |
[2] | 刘宜胜, 徐光逸. 斜吹气流入射角对纱线折入的影响[J]. 纺织学报, 2020, 41(07): 72-77. |
[3] | 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用 [J]. 纺织学报, 2020, 41(01): 139-144. |
[4] | 李斯湖, 沈敏, 白聪, 陈亮. 喷气织机辅助喷嘴结构参数对流场特性的影响[J]. 纺织学报, 2019, 40(11): 161-167. |
[5] | 陈旭, 吴炳洋, 范滢, 杨木生. 蓄热调温织物低温防护过程的数值模拟[J]. 纺织学报, 2019, 40(07): 163-168. |
[6] | 郑振荣, 智伟, 韩晨晨, 赵晓明, 裴晓园. 碳纤维织物在热流冲击下的热传递数值模拟[J]. 纺织学报, 2019, 40(06): 38-43. |
[7] | 曹海建, 陈红霞, 黄晓梅. 玻璃纤维/环氧树脂基夹芯材料侧压性能数值模拟[J]. 纺织学报, 2019, 40(05): 59-63. |
[8] | 何建, 裴泽光, 周健, 熊祥章, 吕海辰. 喷气涡流纺金属丝包芯纱成纱过程的在线观测与分析[J]. 纺织学报, 2019, 40(05): 136-143. |
[9] | 广少博, 金玉珍, 祝晓晨. 喷气织机延伸喷嘴内气流场特性分析[J]. 纺织学报, 2019, 40(04): 135-139. |
[10] | 刘倩楠, 张涵, 刘新金, 苏旭中. 基于ABAQUS的三原组织机织物拉伸力学性能模拟[J]. 纺织学报, 2019, 40(04): 44-50. |
[11] | 尚珊珊, 郁崇文, 杨建平, 钱希茜. 喷气涡流纺纺纱过程中的气流场数值模拟[J]. 纺织学报, 2019, 40(03): 160-167. |
[12] | 林燕燕, 邹专勇, 陈玉香, 杨艳秋. 喷气涡流纺纱线热黏合增强工艺[J]. 纺织学报, 2019, 40(02): 58-62. |
[13] | 史倩倩, 高备, 林惠婷, 张玉泽, 汪军. 传统型与双喂给转杯纺纺纱器及其成纱性能对比[J]. 纺织学报, 2019, 40(02): 63-68. |
[14] | 姚江薇 邹专勇 闫琳琳 卫国 唐佩君. 喷气涡流纺纱线拉伸断裂强力预测模型构建与验证[J]. 纺织学报, 2018, 39(10): 32-37. |
[15] | 闫琳琳 邹专勇 卫国 程隆棣. 基于螺旋导引槽空心锭子的喷气涡流纺加捻腔流场模拟[J]. 纺织学报, 2018, 39(09): 139-145. |
|