纺织学报 ›› 2019, Vol. 40 ›› Issue (06): 8-13.doi: 10.13475/j.fzxb.20180703006

• 纤维材料 • 上一篇    下一篇

耐高温相变蜡/聚丙烯共混物的制备及其性能

魏海江1,2, 江力3, 张顺花1,2()   

  1. 1.浙江理工大学 材料与纺织学院、丝绸学院, 浙江 杭州 310018
    2.浙江理工大学 先进纺织材料与制备技术教育部重点实验室, 浙江 杭州 310018
    3.浙江恒澜科技有限公司, 浙江 杭州 311200
  • 收稿日期:2018-07-11 修回日期:2019-03-12 出版日期:2019-06-15 发布日期:2019-06-25
  • 通讯作者: 张顺花
  • 作者简介:魏海江(1994—),男,硕士生。主要研究方向为新纤维材料及功能性纤维材料。
  • 基金资助:
    浙江省国际科技合作双边产业联合研发项目(2019C54003)

Preperation and properties of heat-resistant phase change wax/polypropylene blends

WEI Haijiang1,2, JIANG Li3, ZHANG Shunhua1,2()   

  1. 1. Silk Institute, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Zhejiang Henglan Technology Co., Ltd., Hangzhou, Zhejiang 311200, China
  • Received:2018-07-11 Revised:2019-03-12 Online:2019-06-15 Published:2019-06-25
  • Contact: ZHANG Shunhua

摘要:

为解决实际应用过程中石蜡起始挥发温度低的问题,采用双螺杆挤出机通过熔融共混法制备耐高温相变蜡(PC-WAX)/聚丙烯(PP)共混物,并借助差示扫描量热仪、热重分析仪与双柱毛细管流变仪对共混物的热性能与流变性能进行测试与分析。结果表明:PC-WAX质量分数为20%的共混物其起始挥发温度为225.91 ℃,相比纯PC-WAX增高,且热挥发速率减小;PC-WAX/PP共混物熔体属于剪切变稀流体,随着PC-WAX质量分数的增加,共混物熔体的剪切应力、剪切黏度与黏流活化能逐渐减小,在温度为180 ℃、剪切速率为5571.21 s-1下,PC-WAX质量分数为20%的共混物熔体剪切应力、剪切黏度与黏流活化能较纯PP分别下降了52.9%、48.6%和66.3%;共混物的结构黏度指数随温度的升高和PC-WAX质量分数的增加而减小。

关键词: 相变蜡, 聚丙烯, 挥发温度, 共混改性, 流变性能, 热性能

Abstract:

To solve low initial volatilization temperature of paraffin wax, phase change wax(PC-WAX)/ polypropylene(PP) blends were prepared by melt blending with twin-screw extruder. The thermal and rheological properties of blends were characterized by differential scanning calorimeter, thermal gravimetric analyzer and twin-bore capillary rheometer. The results demonstrate that the initial evaporation temperature of 20% mass fraction PC-WAX blends is 225.91 ℃. Compared with the initial evaporation temperature of PC-WAX, its value increases and thermal evaporation rate declines. The blends belong to the fluids of shear thinning type. As PC-WAX mass fraction increases, the shear stress, shear viscosity and viscous flow activation energy of blends will gradually decrease. At 180 ℃ and shearing rate of 5 571.21 s-1, the shear stress, shear viscosity and viscous flow activation energy of blends with 20% mass fraction PC-WAX has fallen by 52.9%, 48.6% and 66.3% respectively compared with the pure PP. Furthermore, the structure viscosity index of blends decreases with the increase of temperature and the mass fraction of PC-WAX.

Key words: phase change wax, polypropylene, volatilization temperature, blending modification, rheological property, thermal property

中图分类号: 

  • TS102.5

图1

不同质量分数PC-WAX共混物的升温与降温曲线"

表1

不同质量分数PC-WAX共混物的DSC数据"

样品
编号
升温 降温
Tmo/
Tm/
ΔHm/
(J·g-1)
Tco/
Tc/
ΔHc/
(J·g-1)
1# 0 0
2# 26.83 29.67 7.05 24.50 22.00 6.95
3# 26.50 29.50 13.51 24.67 22.33 13.34
4# 26.33 29.50 19.98 25.00 22.50 19.82
5# 26.16 29.33 25.68 25.33 22.67 25.43

图2

不同质量分数PC-WAX共混物的热稳定性曲线"

图3

PC-WAX/PP共混物熔体的非牛顿指数"

图4

剪切速率对PC-WAX/PP共混物熔体流变性能的影响"

图5

温度对共混物熔体剪切黏度的影响"

表2

不同剪切速率下共混物熔体的黏流活化能"

试样
编号
556.55 s-1 1 281.42 s-1 2 818.36 s-1 5 571.21 s-1
1# 42.22 35.61 32.93 27.44
3# 34.23 27.49 19.42 16.22
5# 28.35 20.68 15.12 9.25

图6

180 ℃下不同质量分数PC-WAX共混物的lgηα-γ·1/2曲线"

图7

4#试样在不同温度下的lgηα-γ·1/2曲线"

[1] HONG H Z, PAN Y, SUN H X, et al. Superwetting polypropylene aerogel supported form-stable phase change materials with extremely high organics loading and enhanced thermal conductivity[J]. Solar Energy Materials and Solar Cells, 2018,174:307-313.
[2] HUANG X, ALVA G, JIA Y T, et al. Morphological characterization and applications of phase change materials in thermal energy storage: a review[J]. Renewable and Sustainable Energy Reviews, 2017,72:128-145.
[3] KARAIPEKLI A, BICER A, SARI A, et al. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes[J]. Energy Conversion and Management, 2017,134:373-381.
[4] 王瑞, 孙艳丽, 刘星, 等. 碳纳米管改性相变微胶囊的力学与热学性能[J]. 纺织学报, 2018,39(2):119-125.
WANG Rui, SUN Yanli, LIU Xing, et al. Mechanical and thermal properties of phase change microcapsules modified with carbon nanotubes[J]. Journal of Textile Research, 2018,39(2):119-125.
[5] 林启松, 江力, 汪凯, 等. 新型改性聚酯的制备及其性能[J]. 纺织学报, 2018,39(8):22-26.
LIN Qisong, JIANG Li, WANG Kai, et al. Preparation and properties of novel modified polyester[J]. Journal of Textile Research, 2018,39(8):22-26.
[6] 张如心, 张顺花, 杨勉. 壳聚糖/聚丙烯共混熔体的剪切流变性能[J]. 现代纺织技术, 2016,24(5):1-4.
ZHANG Ruxin, ZAHNG Shunhua, YANG Mian. Shear and rheological properties of CTS/PP blends melt[J]. Advanced Textile Technology, 2016,24(5):1-4.
[7] KONUKLU Y, PAKSOY O H, UNAL M. Nanoencapsulation of n-alkanes with poly(styrene-co-ethylacrylate) shells for thermal energy storage[J]. Applied Energy, 2015,150:335-340.
[8] FANG Y T, WEI H, LIANG X H, et al. Preparation and thermal performance of silica/n-tetradecane microencapsulated phase change material for cold energy storage[J]. Energy and Fuels, 2016,30(11):9652-9657.
[9] 夏维, 陈立军, 赵杰, 等. 皮芯型复合储能调温聚酰胺 6 纤维的制备与表征[J]. 纺织学报, 2018,39(4):1-8.
XIA Wei, CHEN Lijun, ZHAO Jie, et al. Preparation and characterization of sheath-core energy storage and thermo-regulated composite fibers of polyamide 6[J]. Journal of Textile Research, 2018,39(4):1-8.
[10] ZHANG G Q, CAI C W, ZHU G C, et al. Preparation and properties of high thermo stability phase-change material microcapsules[C] // YI L, LING G, WEI L X. 11th Textile Bioengineering and Informatics Symposium. Manchester: Textile Bioengineering and Informatics Society, 2018: 840-847.
[11] ZHANG Q L, ZHAO Y Q, FENG J C. Systematic investigation on shape stability of high-efficiency SEBS/paraffin form-stable phase change materials[J]. Solar Energy Materials and Solar Cells, 2013,118:54-60.
[1] 乔燕莎, 王茜, 李彦, 桑佳雯, 王璐. 聚多巴胺涂层聚丙烯疝气补片的制备及其体外炎性反应[J]. 纺织学报, 2020, 41(09): 162-166.
[2] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[3] 朱清, 徐丹丹, 潘园歌, 王成龙, 郑今欢. 水性聚丙烯酸酯对涂层商标织物图案打印效果的影响[J]. 纺织学报, 2020, 41(08): 55-62.
[4] 刘国金, 石峰, 陈新祥, 张国庆, 周岚. 聚氨酯/ 相变蜡蓄热调温功能整理剂的制备及其在棉织物上的应用[J]. 纺织学报, 2020, 41(07): 129-134.
[5] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[6] 王晶晶, 陈咏, 王朝生, 王华平, 边树昌, 乌婧. 生物基聚对苯二甲酸丙二醇酯低聚物的提取及其热性能[J]. 纺织学报, 2020, 41(06): 1-7.
[7] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[8] 张一敏, 周伟涛, 何建新, 杜姗, 陈香香, 崔世忠. 偕胺肟化SiO2 / 聚丙烯腈复合纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(05): 25-29.
[9] 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
[10] 姬洪, 张阳, 陈康, 宋明根, 蒋权, 范永贵, 张玉梅, 王华平. 基于动力学特性的黑色高强聚酯工业丝研发[J]. 纺织学报, 2020, 41(04): 1-8.
[11] 万雨彩, 刘迎, 王旭, 易志兵, 刘轲, 王栋. 聚乙烯醇-乙烯共聚物纳米纤维增强聚丙烯微米纤维复合空气过滤材料的结构与性能[J]. 纺织学报, 2020, 41(04): 15-20.
[12] 赵亚奇, 郭雯静, 杜玲枝, 赵振新, 赵海鹏. 自由基引发剂制备高相对分子质量聚丙烯腈研究进展[J]. 纺织学报, 2020, 41(04): 174-180.
[13] 吴横, 金欣, 王闻宇, 朱正涛, 林童, 牛家嵘. 聚丙烯腈/ 硝酸钠纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2020, 41(03): 26-32.
[14] 李国庆, 李平平, 刘瀚霖, 李妮. 聚丙烯腈/ 聚氨酯透明膜的制备及其性能[J]. 纺织学报, 2020, 41(03): 20-25.
[15] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/ 聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!