纺织学报 ›› 2019, Vol. 40 ›› Issue (07): 8-12.doi: 10.13475/j.fzxb.20180709706

• 纤维材料 • 上一篇    下一篇

冷却温度对聚偏氟乙烯/超高分子量聚乙烯共混中空纤维膜结构与性能的影响

李娜娜1, 鲁清晨2, 尹巍巍2, 肖长发1   

  1. 1. 天津工业大学 省部共建分离膜与膜过程国家重点实验室, 天津 300387
    2. 天津工业大学 纺织科学与工程学院, 天津 300387
  • 收稿日期:2018-07-31 修回日期:2019-04-08 出版日期:2019-07-15 发布日期:2019-07-25
  • 作者简介:李娜娜(1982-),女,教授,博士。主要研究方向为功能纤维与膜分离技术。E-mail: linana_tj@126.com
  • 基金资助:
    国家自然科学基金青年科学基金项目(51503144);天津市自然科学基金重点项目(18JCZDJC37000)

Influence of cooling temperature on structure and properties of polyvinylidene fluoride/ultrahigh-molecular-weight polyethylene blends hollow fiber membrane

LI Nana1, LU Qingchen2, YIN Weiwei2, XIAO Changfa1   

  1. 1. State Key Laboratory of Separation Membrane and Membranes Processes, Tianjin Polytechnic University, Tianjin 300387, China
    2. School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
  • Received:2018-07-31 Revised:2019-04-08 Online:2019-07-15 Published:2019-07-25

摘要:

针对聚偏氟乙烯(PVDF)膜强度与渗透性能难以同步提高的问题,以矿物油和邻苯二甲酸二丁酯为复合稀释剂,通过热致相分离法制备了PVDF/超高分子量聚乙烯(UHMWPE)共混中空纤维膜,探究不同冷却温度对膜形貌及孔结构的影响,并通过气通量、水通量及拉伸强力测试表征了中空纤维膜的渗透性能与力学性能。结果表明:原纤状UHMWPE增加了PVDF球晶聚集体的连接性;冷却温度对共混中空纤维膜的结构与性能影响显著;随着冷却温度的升高,PVDF/邻苯二甲酸二丁酯和UHMWPE/矿物油的相分离与结晶时间均延长,纤维膜的平均孔径和孔隙率增加,渗透性能改善,但大孔的出现和UHMWPE原纤数量的减少使纤维膜的力学性能下降。

关键词: 中空纤维膜, 热致相分离法, 聚偏氟乙烯, 超高分子量聚乙烯, 冷却温度

Abstract:

In order to solve the problem of hard synchronous increase strength and permeability of polyvinylidene fluoride(PVDF) membrane, PVDF/ultrahigh-molecular-weight polyethylene(UHMWPE) blends hollow fiber membranes were prepared by thermally induced phase separation, using mineral oil and dibutyl phthalate as mixed diluents. The influences of different cooling temperatures on the morphology and pore structure of the membrane were investigated. Permeability and mechanical properties of hollow fiber membranes were characterized by gas flux, water flux and tensile strength. The results show that fibrillar UHMWPE increases the connectivity of PVDF spherulitic aggregates. The cooling temperature has a significant influence on the structure and properties of the blends hollow fiber membrane. With the cooling temperature increases, the time of phase separation and crystallization of blends system(PVDF/dibutyl phthalate and UHMWPE/mineral oil) are prolonged. The average pore size and porosity of the membrane increase, which improves the membrane permeability. However, the appearance of large pores and the decrease of UHMWPE fibrils reduce the mechanical properties of the membrane.

Key words: hollow fiber membrane, thermally induced phase separation, polyvinylidene fluoride, ultrahigh-molecular-weight polyethylene, cooling temperature

中图分类号: 

  • TB324

图1

不同冷却温度下PVDF/UHMWPE共混中空纤维膜的横截面扫描电镜照片"

图2

不同冷却温度条件下PVDF/UHMWPE共混中空纤维膜的孔径分布"

表1

不同冷却温度下PVDF/UHMWPE共混中空纤维膜平均孔径和孔隙率"

冷却温度/℃ 孔隙率/% 平均孔径/nm
20 74.0 1 045
35 76.2 1 104
50 77.8 1 154
65 81.1 1 227

表2

不同冷却温度条件下PVDF/UHMWPE共混中空纤维膜通量和接触角"

冷却温度/
气通量/
(L·m-2·h-1)
水通量/
(L·m-2·h-1)
接触角/
(°)
20 892 1 525 76.8
35 920 1 721 100.5
50 951 1 946 108.5
65 970 2 170 117.8

表3

冷却温度对PVDF/UHMWPE共混中空纤维膜拉伸强度和断裂伸长率的影响"

冷却温度/℃ 拉伸强度/MPa 断裂伸长率/%
20 4.7 182.3
35 4.2 160.2
50 3.5 150.6
65 3.1 128.1
[1] 顾蓓蓓, 胡啸林 . 中空纤维膜的现状与研究进展[J]. 广州化工, 2010,38(6):42-44.
GU Beibei, HU Xiaolin . Status-quo and research development of hollow fiber membrane[J]. Guangzhou Chemical Industry, 2010,38(6):42-44.
[2] ABED M R M, KUMBHARKAR S C, GROTH A M , et al. Ultrafiltration PVDF hollow fibre membranes with interconnected bicontinuous structures produced via a single-step phase inversion technique[J]. Journal of Membrane Science, 2012, 407-408:145-154.
[3] ZHOU Q H, WANG Z, SHEN H J , et al. Morphology and performance of PVDF tips microfiltration hollow fiber membranes prepared from PVDF/BDP/DOP systems for industrial application[J]. Journal of Chemical Technology & Biotechnology, 2015,91(6):1697-1708.
[4] ANTHONY J C . Methods for making microporous products: US, 4247498[P]. 1981-01-27.
[5] KIM J F, JUNG J T, WANG H H , et al. Microporous PVDF membranes via thermally induced phase separation (tips) and stretching methods[J]. Journal of Membrane Science, 2016,509:94-104.
[6] LI H J . Research on structure and performance of PVDF microporous membranes via thermally induced phase separation[J]. New Chemical Materials, 2008,36(2):42-43,46.
[7] 武利顺, 孙俊芬, 王庆瑞 . 凝固条件对聚偏氟乙烯膜结构的影响[J]. 纺织学报, 2004,25(6):12-14.
WU Lishun, SUN Junfen, WANG Qingrui . Effect of solidification conditions on the structure of polyvinylidene fluoride membrane[J]. Journal of Textile Research, 2004,25(6):12-14.
[8] 徐丽 . 疏水微孔膜的制备及其在膜蒸馏中的应用[D]. 杭州:浙江大学, 2007: 43-46.
XU Li . Fabrication of hydrophobic microporous membranes and their application in membrane distillation[D]. Hangzhou: Zhejiang University, 2007: 43-46.
[9] WANG L, HUANG D X, WANG X D , et al. Preparation of PVDF membranes via the low-temperature tips method with diluent mixtures: the role of coagulation conditions and cooling rate[J]. Desalination, 2015,361:25-37.
[10] CUI Z Y, DU C H, XU Y Y , et al. Preparation of porous PVDF membrane via thermally induced phase separation using sulfolane[J]. Journal of Applied Polymer Science, 2008,108(1):272-280.
[11] 周钱华 . 热致相分离法制备聚偏氟乙烯中空纤维膜[D]. 北京:北京工业大学, 2015: 38-39.
ZHOU Qianhua . Preparation of polyvinylidene fluoride hollow fiber membrane by thermally induced phase separation[D]. Beijing: Beijing University of Technology, 2015: 38-39.
[12] LI N N, LIU, F, LU Q C , et al. The preparation and study of poly(vinylidene fluoride)/ultrahigh-molecular-weight polyethylene/SiO2 hollow fiber membrane with network enhanced structure[J]. Reactive and Functional Polymers, 2016,109:64-69.
[13] WANG Z Y, WEI Y, ZHOU C X . Preparation of polyethylene microporous membranes with high water permeability from thermally induced multiple phase transitions[J]. Polymer, 2015,56:535-544.
[14] SONG H M, YU H W, ZHU L J , et al. Durable hydrophilic surface modification for PTFE hollow fiber membranes[J]. Reactive and Functional Polymers, 2017,114:110-117.
[15] WANG X D, ZHANG Q . Compatibilizing effect of novolak on toughness, crystallite and morphology of polyacetal and nitrile-butadiene rubber blends[J]. Chemical Research in Chinese Universities, 2001(4):673-677.
[16] ZHANG H, LU X L, LIU Z Y , et al. The unidirectional regulatory role of coagulation bath temperature on cross-section radius of the PVDF hollow-fiber membrane[J]. Journal of Membrane Science, 2018,550:9-17.
[1] 梅硕, 李金超, 卢士艳, 肖长发, 杨勇, 冯向伟. 高强度聚氯乙烯中空纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 16-20.
[2] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[3] 王晓春, 张健飞, 张丽平, 王娜娜, 闫金龙, 赵国樑. 高疏水染料结构对超高分子量聚乙烯纤维染色性能的影响[J]. 纺织学报, 2020, 41(03): 78-83.
[4] 吴倩倩, 李珂, 杨立双, 付译鋆, 张瑜, 张海峰. 载药聚偏氟乙烯伤口敷料的制备及其性能 [J]. 纺织学报, 2020, 41(01): 26-31.
[5] 高尚鹏 黄庆林 戴维 肖长发. 聚偏氟乙烯光致热纳米纤维膜的制备及其性能[J]. 纺织学报, 2019, 40(08): 1-6.
[6] 萧传敏 肖长发 张泰 王新亚. 编织管增强型聚乳酸中空纤维膜结构及其性能[J]. 纺织学报, 2019, 40(08): 20-26.
[7] 吴利伟, 王伟, 林佳弘, 姜茜. 芳纶/超高分子量聚乙烯织物增强聚氨酯夹芯复合材料制备及其力学性能[J]. 纺织学报, 2019, 40(07): 64-70.
[8] 陆振乾 许玥. 剪切增稠液浸渍超高分子量聚乙烯织物的防锥刺性能[J]. 纺织学报, 2018, 39(10): 58-62.
[9] 吴小娟 余妙晶 舒慧 郑怡筱 葛烨倩 . 过温保护层合纳米纤维隔膜的制备及其性能[J]. 纺织学报, 2018, 39(07): 21-26.
[10] 吕赛龙 霍瑞亭 贾国强. 光催化自清洁纺织品的制备及其性能[J]. 纺织学报, 2018, 39(05): 87-91.
[11] 张恒 甄琪 钱晓明 刘让同 张一风. 仿生树型超高分子量聚乙烯柔性防刺复合材料制备及其透湿性能[J]. 纺织学报, 2018, 39(04): 63-68.
[12] 杜晗笑 郑振荣 曹森学 陈逢亮. 超疏水气凝胶涂层超高分子量聚乙烯织物的制备与表征[J]. 纺织学报, 2018, 39(04): 93-99.
[13] 蒋洁 陈胜 李静静 付润芳 林义 顾迎春. 静电纺钛酸钡/聚偏氟乙烯纳米复合柔性压电纤维膜[J]. 纺织学报, 2018, 39(02): 14-19.
[14] 李静静 卢辉 蒋洁 张思航 顾迎春 陈胜. 高压电性静电纺柔性氧化锌/聚偏氟乙烯复合纤维膜[J]. 纺织学报, 2018, 39(02): 1-6.
[15] 刘铭 张丽平 张敏 王晓春 赵国樑 王轩 唐星辰 杨中开. 铁黄颜料的表面改性及其在超高分子量聚乙烯中的应用[J]. 纺织学报, 2018, 39(02): 86-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!