纺织学报 ›› 2019, Vol. 40 ›› Issue (8): 109-116.doi: 10.13475/j.fzxb.20180504908
邹梨花1(), 徐珍珍1, 孙妍妍1, 王太冉1, 邱夷平2
ZOU Lihua1(), XU Zhenzhen1, SUN Yanyan1, WANG Tairan1, QIU Yiping2
摘要:
为制备轻质高效的吸波型电磁屏蔽织物,采用层层组装方法在棉织物表面涂层氧化石墨烯/聚苯胺(GO/PANI)电磁屏蔽功能膜。研究苯胺单体浓度、氧化石墨烯质量浓度、组装层数对整理棉织物电性能及电磁屏蔽性能的影响,并分析了屏蔽电磁能的吸收率、反射率以及吸收屏蔽效能和反射屏蔽效能。结果表明:苯胺单体浓度和组装层数的增加有利于提高棉织物的电磁屏蔽效能,而随着氧化石墨烯质量浓度的增加,织物的电磁屏蔽效能先增加后减小;组装4层GO/PANI功能膜后棉织物的屏蔽效能达到19.91 dB,可屏蔽98.98%的电磁能,其吸收率达到57.63%,而反射率为41.35%,主要屏蔽机制是吸收。
中图分类号:
[1] | 曲华洋, 谢春萍, 徐伯俊 , 等. 全聚赛络纺双芯纱及其弹性电磁屏蔽针织物的制备[J]. 纺织学报, 2018,39(6):52-58. |
QU Huayang, XIE Chunping, XU Bojun , et al. Preparation of elastic radiation resistant textile based on double filament core-spun yarn[J]. Journal of Textile Research, 2018,39(6):52-58. | |
[2] | 段永洁, 谢春萍, 刘新金 . 棉/不锈钢长丝机织物的电磁屏蔽及折皱回复性能[J]. 纺织学报, 2016,37(9):31-36. |
DUAN Yongjie, XIE Chunping, LIU Xinjin . Electromagnetic shielding and wrinkle recovery property of cotton/stainless steel filament woven fabric[J]. Journal of Textile Research, 2016,37(9):31-36. | |
[3] | 师艳丽, 李娜娜, 付元静 , 等. 用于纺织品表面改性的磁控溅射技术研究进展[J]. 纺织学报, 2016,37(4):165-169. |
SHI Yanli, LI Nana, FU Yuanjing , et al. Research pro-gress of magnetron sputtering in textiles[J]. Journal of Textile Research, 2016,37(4):165-169. | |
[4] | 缪润伍, 金丽华, 魏祺煜 , 等. 多轴向导电芳纶增强复合材料及其电磁屏蔽性能[J]. 纺织学报, 2019,40(2):100-104. |
MIAO Runwu, JIN Lihua, WEI Qiyu , et al. Preparation and electromagnetic shielding property of conductive poly(p-phenylene terephamide) of reinforced composite materials[J]. Journal of Textile Research, 2019,40(2):100-104. | |
[5] |
TUNAKOVA V, GREGR J, TUNAK M , et al. Functional polyester fabric/polypyrrole polymer composites for electromagnetic shielding: optimization of process parameters[J]. Journal of Industrial Textiles, 2018,47(5):686-711.
doi: 10.1177/1528083716667262 |
[6] |
ZOU L, LAN C, LI X , et al. Superhydrophobization of cotton fabric with multiwalled carbon nanotubes for durable electromagnetic interference shielding[J]. Fibers and Polymers, 2015,16(10):2158-2164.
doi: 10.1007/s12221-015-5436-1 |
[7] |
YUAN Y, YIN W, YANG M , et al. Lightweight, flexible and strong core-shell non-woven fabrics covered by reduced graphene oxide for high-performance electromagnetic interference shielding[J]. Carbon, 2018,130:59-68.
doi: 10.1016/j.carbon.2017.12.122 |
[8] |
HAJI A, RAHBAR R, SHOUSHTARI A . Improved microwave shielding behavior of carbon nanotube-coated PET fabric using plasma technology[J]. Applied Surface Science, 2014,311:593-601.
doi: 10.1016/j.apsusc.2014.05.113 |
[9] | 张松林, 邹梨花, 张梓萌 , 等. 氧化石墨烯多层膜在棉织物上的层层组装及其电磁屏蔽性能[J]. 东华大学学报(自然科学版), 2016,42(1):30-34,39. |
ZHANG Songlin, ZOU Lihua, ZHANG Zimeng , et al. Graphene oxide multilayer films on cotton fabrics through layer-by-layer assembly and its electromagnetic shielding property[J]. Journal of Donghua University(Natural Science Edition), 2016,42(1):30-34, 39. | |
[10] |
ESMAEELI A, GHAFFARINEJAD A, ZAHEDI A , et al. Copper oxide-polyaniline nanofiber modified fluorine doped tin oxide (FTO) electrode as non-enzymatic glucose sensor[J]. Sensors and Actuators B: Chemical, 2018,266:294-301.
doi: 10.1016/j.snb.2018.03.132 |
[11] |
AHAD I, HARUN S, GAN S , et al. Polyani-line (PANI) optical sensor in chloroform detection[J]. Sensors and Actuators B: Chemical, 2018,261:97-105.
doi: 10.1016/j.snb.2018.01.082 |
[12] |
LI M, ZHOU S . Alpha-Fe2O3/polyaniline nanocom-posites as an effective catalyst for improving the electrochemical performance of microbial fuel cell[J]. Chemical Engineering Journal, 2018,339:539-546.
doi: 10.1016/j.cej.2018.02.002 |
[13] |
LIU H, ZOU Y, HUANG L , et al. Enhanced electrochemical performance of sandwich-structured polyaniline-wrapped silicon oxide/carbon nanotubes for lithium-ion batteries[J]. Applied Surface Science, 2018,442:204-212.
doi: 10.1016/j.apsusc.2018.02.023 |
[14] |
SHI M, BAI M, LI B . Synjournal of mesoporous crosslinked polyaniline using SDS as a soft template for high-performance supercapacitors[J]. Journal of Materials Science, 2018,53(13):9731-9741.
doi: 10.1007/s10853-018-2280-x |
[15] |
JOSEPH N, VARGHESE J, SEBASTIAN M . A facile formulation and excellent electromagnetic absorption of room temperature curable polyaniline nanofiber based inks[J]. Journal of Materials Chemistry C, 2016,4(5):999-1008.
doi: 10.1039/C5TC03080C |
[16] |
KOH Y, MOKHTAR N, PHANG S . Effect of microwave absorption study on polyaniline nanocomposites with untreated and treated double wall carbon nanotubes[J]. Polymer Composites, 2018,39(4):1283-1291.
doi: 10.1002/pc.v39.4 |
[17] |
JIANG L, SYED J, GAO Y , et al. Electrodeposition of Ni(OH)2 reinforced polyaniline coating for corrosion protection of 304 stainless steel[J]. Applied Surface Science, 2018,440:1011-1021.
doi: 10.1016/j.apsusc.2018.01.145 |
[18] |
HOGHOGHIFARD S, MOKHTARI H, DEHGHANI S . Improving EMI shielding effectiveness and dielectric properties of polyaniline-coated polyester fabric by effective doping and redoping procedures[J]. Journal of Industrial Textiles, 2018,47(5):587-601.
doi: 10.1177/1528083716665630 |
[19] |
ENGIN F, USTA I . Development and characterisation of polyaniline/polyamide (PANI/PA) fabrics for electromagnetic shielding[J]. Journal of The Textile Institute, 2015,106(8):872-879.
doi: 10.1080/00405000.2014.950085 |
[20] | ZHAO H, HOU L, BI S , et al. Enhanced X-Band electromagnetic-interference shielding performance of layer-structured fabric-supported polyaniline/cobalt-nickel coatings[J]. Acs Applied Materials & Interfaces, 2017,38(9):33059-33070. |
[21] |
ZOU L, ZHANG S, LI X , et al. Nanocomposites: step-by-step strategy for constructing multilayer structured coatings toward high-efficiency electromagnetic interference shielding[J]. Advanced Materials Interfaces, 2016,3(5). DOI: 10.1002/admin.201670019.
doi: 10.1002/admi.201670022 pmid: 27088067 |
[22] |
SAINI P, CHOUDHARY V . Conducting polymer coated textile based multilayered shields for suppression of microwave radiations in 8.2-12.4 GHz range[J]. Journal of Applied Polymer Science, 2013,129(5):2832-2839.
doi: 10.1002/app.38994 |
[23] |
GAUTAM V, SINGH K, YADAV V . Preparation and characterization of green-nano-composite material based on polyaniline, multiwalled carbon nano tubes and carboxymethyl cellulose: for electrochemical sensor applications[J]. Carbohydrate Polymers, 2018,189:218-228.
doi: 10.1016/j.carbpol.2018.02.029 pmid: 29580402 |
[24] |
RYBICKI T, STEMPIEN Z, RYBICKI E , et al. EMI shielding effectiveness of polyacrylonitrile fabric with polyaniline deposition by reactive ink-jet printing and model approach[J]. IEEE Transactions on Electromagnetic Compatibility, 2016,58(4):1025-1032.
doi: 10.1109/TEMC.15 |
[25] |
TISSERA N, WIJESENA R, RATHNAYAKE S , et al. Heterogeneous in situ polymerization of polyani-line (PANI) nanofibers on cotton textiles: improved electrical conductivity, electrical switching, and tuning properties[J]. Carbohydrate Polymers, 2018,186:35-44.
doi: 10.1016/j.carbpol.2018.01.027 pmid: 29455996 |
[26] | 梁然然, 肖红, 王妮 . 双层及多层电磁屏蔽织物的屏蔽效能[J]. 纺织学报, 2017,38(9):51-58. |
LIANG Ranran, XIAO Hong, WANG Ni . Shielding effectiveness of double and multilayer electromagnetic shielding fabric[J]. Journal of Textile Research, 2017,38(9):51-58. | |
[27] |
JI J, LI R, LI H , et al. Phytic acid assisted fabrication of graphene/polyaniline composite hydrogels for high-capacitance supercapacitors[J]. Composites Part B: Engineering, 2018,155:132-137.
doi: 10.1016/j.compositesb.2018.08.037 |
[1] | 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/ 棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106. |
[2] | 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107. |
[3] | 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/ 聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116. |
[4] | 刘国金, 石峰, 陈新祥, 张国庆, 周岚. 聚氨酯/ 相变蜡蓄热调温功能整理剂的制备及其在棉织物上的应用[J]. 纺织学报, 2020, 41(07): 129-134. |
[5] | 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13. |
[6] | 成世杰, 王晨洋, 张宏伟, 左丹英. 硼氮掺杂碳点对棉织物防紫外线性能的影响[J]. 纺织学报, 2020, 41(06): 93-98. |
[7] | 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173. |
[8] | 周青青, 陈嘉毅, 祁珍明, 陈为健, 邵建中. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(05): 112-120. |
[9] | 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97. |
[10] | 吴颖欣, 胡铖烨, 周筱雅, 韩潇, 洪剑寒, GIL Ignacio. 柔性可穿戴氨纶/ 聚苯胺/ 聚氨酯复合材料的应变传感性能[J]. 纺织学报, 2020, 41(04): 21-25. |
[11] | 谭淋, 施亦东, 周文雅. 棉织物的硅溶胶疏水整理[J]. 纺织学报, 2020, 41(04): 106-111. |
[12] | 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167-173. |
[13] | 赵兵, 黄小萃, 祁宁, 钟洲, 车明国, 葛亮亮. 基于共价结合的纳米银抗菌棉织物研究进展[J]. 纺织学报, 2020, 41(03): 188-196. |
[14] | 马君志, 王冬, 付少海. 氧化石墨烯协同二硫代焦磷酸酯阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2020, 41(03): 15-19. |
[15] | 高思梦, 王鸿博, 杜金梅, 王文聪. 甜菜碱聚合物的合成及其在棉织物抗菌整理中的应用[J]. 纺织学报, 2020, 41(02): 89-94. |
|