纺织学报 ›› 2019, Vol. 40 ›› Issue (8): 117-123.doi: 10.13475/j.fzxb.20190202207
王文聪1,2(), 范静静1,2, 丁超1,2, 王鸿博1,2
WANG Wencong1,2(), FAN Jingjing1,2, DING Chao1,2, WANG Hongbo1,2
摘要:
为制备多功能复合导电织物,将羧基化碳纳米管(NWCNTs-COOH)和聚吡咯(PPy)逐层交替沉积在毛织物表面。借助数字万用表测试不同工艺条件下所得织物的电导率,优化复合导电毛织物的制备工艺;并对最优工艺下制备的复合导电毛织物的结构、耐洗涤性、抗菌性和表面润湿性进行研究。结果表明:羧基化碳纳米管分散液质量浓度为1.0 mg/mL,吡咯溶液浓度为1.00 mol/L,六水合三氯化铁溶液浓度为1.00 mol/L,氧化聚合时间为30 min,氧化聚合温度为0 ℃,组装次数为5时,复合导电毛织物的导电性能相对最优,电导率达到110 S/m左右;羊毛表面覆盖有MWCNTs-COOH/PPy多层膜,经10次洗涤后织物电导率下降至98.8 S/m,耐洗性良好;该复合导电毛织物对大肠杆菌和金黄色葡萄球菌具有明显的抑制能力,且疏水性有所提高。
中图分类号:
[1] |
MAITY S, CHATTERJEE A . Conductive polymer-based electro-conductive textile composites for electromagnetic interference shielding: a review[J]. Journal of Industrial Textiles, 2018,47(8):2228-2252.
doi: 10.1177/1528083716670310 |
[2] |
HAO T, WANG W, YU D . A flexible cotton-based supercapacitor electrode with high stability prepared by multiwalled CNTs/PANI[J]. Journal of Electronic Materials, 2018,47(7):4108-4115.
doi: 10.1007/s11664-018-6306-6 |
[3] | TIAN M, DU M, QU L , et al. Electromagnetic interference shielding cotton fabrics with high electrical conductivity and electrical heating behavior via layer-by-layer self-assembly route[J]. RSC Advance, 2017,68(7):42641-42652. |
[4] |
ZHOU Y, DING X, ZHANG J , et al. Fabrication of conductive fabric as textile electrode for ECG moni-toring[J]. Fibers and Polymers, 2014,15(11):2260-2264.
doi: 10.1007/s12221-014-2260-y |
[5] |
LIU Y, ZHAO X, TUO X . Preparation of polypyrrole coated cotton conductive fabrics[J]. Journal of The Textile Institute, 2016,108(5):1-6.
doi: 10.1080/00405000.2015.1133105 |
[6] | LU M, XIE R, LIU Z , et al. Enhancement in electrical conductive property of polypyrrole-coated cotton fabrics using cationic surfactant[J]. Journal of Applied Polymer Science, 2016,133(32):43601. |
[7] |
XU Q, LI M, YAN P , et al. Polypyrrole-coated cotton fabrics prepared by electrochemical polymerization as textile counter electrode for dye-sensitized solar cells[J]. Organic Electronics, 2016,29:107-113.
doi: 10.1016/j.orgel.2015.11.007 |
[8] |
HAO T, SUN J, WANG W , et al. MWCNTs-COOH/cotton flexible supercapacitor electrode prepared by improvement one-time dipping and carbonization method[J]. Cellulose, 2018,25(7):4031-4041.
doi: 10.1007/s10570-018-1829-9 |
[9] |
YANG M, FU C, XIA Z , et al. Conductive and durable CNT-cotton ring spun yarns[J]. Cellulose, 2018,25(7):4239-4249.
doi: 10.1007/s10570-018-1839-7 |
[10] | 董振峰, 朱志国, 王锐 , 等. 碳纳米管/聚合物复合体系阻燃性能的研究进展[J]. 纺织学报, 2009,30(3):136-142. |
DONG Zhenfeng, ZHU Zhiguo, WANG Rui , et al. Recent development on flame retardancy of carbon nanotubes polymer composites[J]. Journal of Textile Research, 2009,30(3):136-142.
doi: 10.1177/004051756003000204 |
|
[11] | 高博, 赵玉真, 张煜星 , 等. 层层组装法制备多功能超疏水性棉织物[J]. 印染, 2017(15):34-37. |
GAO Bo, ZHAO Yuzhen, ZHANG Yuxing , et al. Preparation of multifunctional super hydrophobic cotton fabric via layer by layer assembly[J]. China Dyeing & Finishing, 2017(15):34-37. | |
[12] | 崔锦峰, 安进, 裴春娟 , 等. 超疏水导电聚吡咯材料的研究进展[J]. 现代化工, 2013,33(9):36-39. |
CUI Jinfeng, AN Jin, PEI Chunjuan , et al. Research progress in superhydrophobic conductive polypyrrole materials[J]. Modern Chemical Industry, 2013,33(9):36-39. | |
[13] |
LEE S, KIM B, CHEN S , et al. Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications.[J]. Journal of the American Chemical Society, 2009,131(2):671-679.
doi: 10.1021/ja807059k pmid: 19105687 |
[14] | ZOU L, ZHANG S, LI X , et al. Step-by-step strategy for constructing multilayer structured coatings toward high-efficiency electromagnetic interference shiel-ding[J]. Advanced Materials Interfaces, 2016,3(5):1-6. |
[15] |
XIN Q, SHAH H, NAWAZ A , et al. Antibacterial carbon-based nanomaterials[J]. Advanced Materials, 2018.DOI: 10.1002/adma.201804838.
doi: 10.1002/adma.202003804 pmid: 33169472 |
[16] |
VARESANO A, VINEIS C, ALUIGI A , et al. Antibacterial efficacy of polypyrrole in textile applications[J]. Fibers and Polymers, 2013,14(1):36-42.
doi: 10.1007/s12221-013-0036-4 |
[17] |
LI M, WEI Z, JIANG L . Polypyrrole nanofiber arrays synthesized by a biphasic electrochemical strategy[J]. Journal of Materials Chemistry, 2008,18(19):2276-2280.
doi: 10.1039/b800289d |
[1] | 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/ 棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106. |
[2] | 秦益民. 含银海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2020, 41(09): 183-190. |
[3] | 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20. |
[4] | 王婷婷, 刘梁, 曹秀明, 王清清. 竹红菌素-聚( 甲基丙烯酸甲酯-co-甲基丙烯酸)纳米纤维的制备及其光敏抗菌性能[J]. 纺织学报, 2020, 41(05): 1-7. |
[5] | 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98. |
[6] | 王晓菲, 万爱兰. 紫外线辐照聚吡咯/ 银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116. |
[7] | 隋智慧, 伞景龙, 王旭, 常江, 吴学栋, 祖彬. 纳米ZnO / 有机氟硅改性聚丙烯酸酯乳液的合成及应用[J]. 纺织学报, 2020, 41(04): 84-90. |
[8] | 张佳慧, 王建萍. 圆形纬编针织物电极导电性能及电阻理论模型构建[J]. 纺织学报, 2020, 41(03): 56-61. |
[9] | 林佳濛, 万爱兰, 缪旭红. 聚吡咯/ 银导电涤纶织物的制备及其性能[J]. 纺织学报, 2020, 41(03): 113-117. |
[10] | 金守峰, 林强强, 马秋瑞, 张浩. 基于BP 神经网络的织物表面绒毛质量的检测方法[J]. 纺织学报, 2020, 41(02): 69-76. |
[11] | 吴倩倩, 李珂, 杨立双, 付译鋆, 张瑜, 张海峰. 载药聚偏氟乙烯伤口敷料的制备及其性能 [J]. 纺织学报, 2020, 41(01): 26-31. |
[12] | 姜珊, 万爱兰, 缪旭红, 蒋高明, 马丕波, 陈晴. 等离子体处理对聚吡咯/涤纶复合导电纱线性能的影响[J]. 纺织学报, 2019, 40(8): 95-100. |
[13] | 余芳, 刘成霞. 用蝴蝶结法测试毛织物弯曲性[J]. 纺织学报, 2019, 40(8): 35-39. |
[14] | 陈莹, 周爽, 韦恬静, 方浩霞, 李宇菲. 聚吡咯复合织物的软模板法制备及其性能[J]. 纺织学报, 2019, 40(12): 93-97. |
[15] | 徐林, 任煜, 张红阳, 吴双全, 李雅, 丁志荣, 蒋文雯, 徐思峻, 臧传锋. 涤纶织物表面TiO2 / 氟硅烷超疏水层构筑及其性能[J]. 纺织学报, 2019, 40(12): 86-92. |
|