纺织学报 ›› 2019, Vol. 40 ›› Issue (09): 83-90.doi: 10.13475/j.fzxb.20180806008

• 染整与化学品 • 上一篇    下一篇

棉织物低温近中性一浴一步法练漂

张悦1,2,3,4, 胡丹玲1,2, 任金娜1,2, 李青1,2()   

  1. 1.武汉纺织大学 化学与化工学院, 湖北 武汉 430200
    2.武汉纺织大学 生物质纤维与生态染整 湖北省重点实验室, 湖北 武汉 430200
    3.苏州大学 纺织与服装工程学院, 江苏 苏州 215123
    4.苏州大学 现代丝绸国家工程实验室, 江苏 苏州 215123
  • 收稿日期:2018-08-23 修回日期:2019-05-03 出版日期:2019-09-15 发布日期:2019-09-23
  • 通讯作者: 李青
  • 作者简介:张悦(1996—),女,硕士生。主要研究方向为低温练漂技术的研发与应用。
  • 基金资助:
    生物质纤维与生态染整湖北省重点实验室开放课题(STRZ2017017);武汉纺织大学科技创新计划项目(183012)

Scouring and bleaching of cotton fabric by low temperature near neutrality one-bath one-step process

ZHANG Yue1,2,3,4, HU Danling1,2, REN Jinna1,2, LI Qing1,2()   

  1. 1. School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. Hubei Key Laboratory of Biomass Fiber and Ecological Dyeing & Finishing, Wuhan Textile University, Wuhan, Hubei 430200, China
    3. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    4. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2018-08-23 Revised:2019-05-03 Online:2019-09-15 Published:2019-09-23
  • Contact: LI Qing

摘要:

为实现基于生物酶的棉织物短流程前处理,构建出过硼酸钠/四乙酰乙二胺(SPB/TAED)低温活化体系,并将果胶酶与纤维素酶溶入该体系对棉织物进行同浴练漂。通过变量控制法分析了酶的种类与质量浓度、SPB与TAED的质量浓度、时间与温度对织物白度与毛效的影响,得到优化的一浴一步工艺:果胶酶、纤维素酶、SPB、TAED、渗透剂质量浓度分别为1、2、15、25、1 g/L,时间为60 min,温度为60 ℃。将此低温工艺与传统的高温(95 ℃)碱性(pH 值12~13)工艺进行对比,结果表明:前者节能优势明显;2种工艺条件下的练漂棉织物具有相当的白度、吸湿性、可染性,但低温练漂织物的强力明显较高,其表面更光滑且杂质较少。

关键词: 棉织物, 低温漂白, 生物精练, 生物酶, 一步法, 前处理

Abstract:

In order to achieve a short pretreatment utilizing bio-enzyme for cotton fabric, the low-temperature activated system based on sodium perborate/tetraethylenediamine (SPB/TAED) was established. At the same time, both cellulase and pectinase were added into SPB/TAED system. Influences of the type and dosage of bio-enzyme, dosage of SPB/TAED, process duration and temperature on whiteness index (WI) and capillary effect (CE) of the fabric were investigated by the variable-controlling method. It can be found that good compatibility exists between bio-scouring and SPB/TAED bleaching. An optimized process is obtained as follows: cellulase 1 g/L, pectinase 2 g/L, SPB 15 g/L, TAED 25 g/L, penetrating agent 1 g/L, duration of 60 min and temperature of 60 ℃. In comparison with the conventional process carried out at 95 ℃ using peroxide and strong alkali (pH 12-13), the optimized low-temperature process has an obvious advantage in saving energy. The WI, wettability and dyeability are similar for the fabrics pretreated by the low-temperature and conventional high-temperature process. The breaking force, however, treated by low-temperature process is higher, and the surface of such pretreated fabrics is smoother and cleaner.

Key words: cotton fabric, low-temperature bleaching, bio-scouring, bio-enzyme, one-step, pretreatment

中图分类号: 

  • TS192.5

图1

酶的种类对棉织物白度和毛效的影响 I—不含酶; II—2 g/L纤维素酶; III—1 g/L果胶酶;IV—2 g/L纤维素酶+1 g/L果胶酶。"

图2

混合酶的质量浓度对棉织物白度和毛效的影响 A—纤维素酶1 g/L+果胶酶0.5 g/L;B—纤维素酶2 g/L+果胶酶1 g/L;C—纤维素酶3 g/L+果胶酶1.5 g/L;D—纤维素酶4 g/L+果胶酶2 g/L;E—纤维素酶5 g/L+果胶酶2.5 g/L。"

图3

SPB/TAED活化体系的氧漂机制"

图4

SPB质量浓度对棉织物白度和毛效的影响"

图5

TAED质量浓度对棉织物白度和毛效的影响"

图6

练漂时间对棉织物白度和毛效的影响"

图7

练漂温度对棉织物白度和毛效的影响"

表1

织物白度、工艺pH值、温度与理论能耗ΔQ的对比"

工艺 白度/% pH值 温度/℃ ΔQ/kJ
练漂前 练漂后
A 81.91±0.17 9.18 5.87 60 6 318
B 82.97±1.60 13.05 12.81 95 13 689

表2

织物吸湿性能与力学性能的对比"

试样
编号
毛效/cm 铺展时间/s 断裂强力/(N·mm-2)
1 6.20±0.39 6.59±0.41 427.62 312.30
2 12.90±0.48 0.46±0.07 413.94 323.45
3 9.70±0.42 0.71±0.10 263.03 217.73

表3

织物活性染料可染性能的对比"

试样编号 E/% F/% C K/S h/(°) ΔE
1 52.76 7.05 35.82 2.93 209.68 5.92
2 70.17 28.77 38.79 2.72 216.72 0.52
3 66.71 26.31 38.61 2.64 217.35 -

图8

织物微观形貌的对比(×5 000)"

[1] MADHU A, CHAKRABORTY J N. Developments in application of enzymes for textile processing[J]. Journal of Cleaner Production, 2017,145:114-133.
doi: 10.1016/j.jclepro.2017.01.013
[2] NIAZ A, MALIK Q J, MUHAMMAD S, et al. Bioscouring of cellulosic textiles[J]. Coloration Technology, 2011,127(4):211-216.
doi: 10.1111/cote.2011.127.issue-4
[3] 任花, 刘建勇. 生物酶在棉织物前处理中的应用研究[J]. 天津科技, 2016,43(1):17-20.
REN Hua, LIU Jianyong. The application of enzymes in cotton pretreatment[J]. Tianjin Science & Technology, 2016,43(1):17-20.
[4] HOFMANN J, JUST G, PRITZKOW W, et al. Bleaching activators and the mechanism of bleaching activation[J]. Journal Für Praktische Chemie Chemiker-Zeitung, 1992,334(4):293-297.
[5] YASHOVARDHAN I, AKHILAHMAD W. Sodium perborate bleaching of cotton by using tetraacetylethylenediamine activator[J]. Indian Journal of Fiber & Textile Research, 2018,43(1):120-125.
[6] ABDEL-HALIM E S, AL-DEYAB S S. Low temperature bleaching of cotton cellulose using peracetic acid[J]. Carbohydrate Polymers, 2011,86:988-994.
doi: 10.1016/j.carbpol.2011.05.051
[7] SCARBOROUGH S J, MATHEWS A J. Using T. A.E.D in bleaching fiber blends to improve fiber quality[J]. Textile Chemist & Colorist & American Dyestuff Reporter, 2000,32(3):33-37.
[8] SHAO J Z, HUANG Y, WANG Z H, et al. Cold pad-batch bleaching of cotton fabrics with TAED/H2O2 activating system[J]. Coloration Technology, 2010,126(2):103-108.
doi: 10.1111/(ISSN)1478-4408
[9] LI Q, TANG H, TANG R C. Bleaching of modal/an-g-casein fiber blend with H2O2/TAED activating system[J]. Journal of Applied Polymer Science, 2012,125(2):1193-1200.
doi: 10.1002/app.v125.2
[10] ŠPIČKA N, ZUPIN Ž, KOVAČ J, et al. Enzymatic scouring and low-temperature bleaching of fabrics constructed from cotton, regenerated bamboo, poly(lactic acid), and soy protein fibers[J]. Fibers and Polymers, 2015,16(8):1723-1733.
doi: 10.1007/s12221-015-5140-1
[11] YU J, SHAO D, SUN C, et al. Pilot-plant investigation on low-temperature bleaching of cotton fabric with TBCC-activated peroxide system[J]. Cellulose, 2017,24(6):2647-2655.
doi: 10.1007/s10570-017-1276-z
[12] WANG G, UMBUZEIRO G D, VENDEMIATTI J A, et al. Synjournal, characterization, and toxicological properties of new cationic bleach activators[J]. Journal of Surfactants and Detergents, 2017,20(1):277-285.
doi: 10.1007/s11743-016-1899-3
[13] ALTAY P, HAUSER P J, GURSOY N C, et al. Facile synjournal of a novel, highly effective, more sustainable and cost-effective cationic bleach activator for cotton: N-[4-(N,N,N)-triethylammoniumchloride-butyryl] caprolactam[J]. Cellulose, 2019,26(4):2849-2860.
doi: 10.1007/s10570-018-02224-9
[14] WANG S, LI S, ZHU Q, et al. A novel low temperature approach for simultaneous scouring and bleaching of knitted cotton fabric of 60 ℃[J]. Industrial & Engineering Chemistry Research, 2014,53(24):9985-9991.
[15] CAI J Y, EVANS D J. Guanidine derivatives used as peroxide activators for bleaching cellulosic textiles[J]. Coloration Technology, 2007,123(2):115-118.
doi: 10.1111/cte.2007.123.issue-2
[16] ALGHAMDI A A, ABDEL-HALIM E S, AL-OTHMAN Z A. Low-temperature bleaching of cotton cellulose using an ultrasound-assisted tetraacetylethylenediamine/hydrogen peroxide/triethanolamine system[J]. Bioresources, 2016,11(1):2784-2796.
[17] LIU Y, TAO J, SUN J, et al. Removing polysaccharides and saccharides related coloring impurities in alkyl polyglycosides by bleaching with the H2O2/TAED/NaHCO3 system[J]. Carbohydrate Polymers, 2014,112:416-421.
doi: 10.1016/j.carbpol.2014.05.065 pmid: 25129762
[18] XU C, LONG X, DU J, et al. A critical reinvestigation of the TAED-activated peroxide system for low-temperature bleaching of cotton[J]. Carbohydrate Polymers, 2013,92:249-253.
doi: 10.1016/j.carbpol.2012.08.088 pmid: 23218291
[19] MAGDY K Z, HANAN B A. A greener approach for full flax bleaching[J]. Journal of The Textile Institute, 2010,101(7):674-678.
doi: 10.1080/00405000902745547
[20] 向中林, 韩雪梅, 刘增祥, 等. 棉织物低温酶氧一浴前处理工艺[J]. 纺织学报, 2017,38(5):80-85.
XIANG Zhonglin, HAN Xuemei, LIU Zengxiang, et al. Low-temperature pretreatment of cotton fabric by combining enzyme treating and peroxide bleaching in one bath[J]. Journal of Textile Research, 2017,38(5):80-85.
[21] 陈静奕, 王强, 周丽华, 等. 棉织物的复合酶精炼[J]. 印染, 2011,37(3):1-3,7.
CHEN Jingyi, WANG Qiang, ZHOU Lihua, et al. Biopreparation of cotton fabric with composite enzymes[J]. China Dyeing & Finishing, 2011,37(3):1-3,7.
[22] Sodiumaperborate[DB/OL].[2018-7-12]. https://en.wikipedia.org/wiki/Sodium_perborate.
[23] XU C, HINKS D, SHAMEY R. Bleaching cellulosic fibers via pre-sorption of N-[4-(triethylaminomethyl)-benzoyl]-butyrolactam chloride[J]. Cellulose, 2010,17(4):849-857.
doi: 10.1007/s10570-010-9412-z
[24] 阎贺静, 堵国成, 陈坚. 棉织物精炼中温度对酶催化效率的影响[J]. 纺织学报, 2012,33(9):76-81.
YAN Hejing, DU Guocheng, CHEN Jian. Effects of scouring temperature of cotton on efficiency of enzymaticcatalysis[J]. Journal of Textile Research, 2012,33(9):76-81.
[25] LIU K, ZHANG X, YAN K L. Bleaching of cotton fabric with tetraacetylhydrazine as bleach activator for H2O2[J]. Carbohydrate Polymers, 2018,188:221-227.
doi: 10.1016/j.carbpol.2018.01.111 pmid: 29525159
[26] 赵酒泉. 过硼酸钠低温漂白棉织物研究[J]. 针织工业, 2014 (3):49-52.
ZHAO Jiuquan. Study of sodium perborate bleaching on cotton fabrics at low temperature[J]. Knitting Industries, 2014 (3):49-52.
[1] 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/ 棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106.
[2] 张娟, 郑环达, 乔燕, 高世会, 郑来久. 亚麻粗纱的超临界CO2 煮漂工艺[J]. 纺织学报, 2020, 41(07): 93-100.
[3] 刘国金, 石峰, 陈新祥, 张国庆, 周岚. 聚氨酯/ 相变蜡蓄热调温功能整理剂的制备及其在棉织物上的应用[J]. 纺织学报, 2020, 41(07): 129-134.
[4] 成世杰, 王晨洋, 张宏伟, 左丹英. 硼氮掺杂碳点对棉织物防紫外线性能的影响[J]. 纺织学报, 2020, 41(06): 93-98.
[5] 周青青, 陈嘉毅, 祁珍明, 陈为健, 邵建中. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(05): 112-120.
[6] 谭淋, 施亦东, 周文雅. 棉织物的硅溶胶疏水整理[J]. 纺织学报, 2020, 41(04): 106-111.
[7] 赵兵, 黄小萃, 祁宁, 钟洲, 车明国, 葛亮亮. 基于共价结合的纳米银抗菌棉织物研究进展[J]. 纺织学报, 2020, 41(03): 188-196.
[8] 高思梦, 王鸿博, 杜金梅, 王文聪. 甜菜碱聚合物的合成及其在棉织物抗菌整理中的应用[J]. 纺织学报, 2020, 41(02): 89-94.
[9] 易领, 张何, 傅昕, 李雯. 石墨烯基锆钛复合材料改性棉织物的制备及其远红外发射性能 [J]. 纺织学报, 2020, 41(01): 102-109.
[10] 王小艳, 杜金梅, 彭铃淇, 荆丽丽, 许长海. 涤纶针织物碱减量和染色一浴一步法工艺 [J]. 纺织学报, 2020, 41(01): 80-87.
[11] 李育洲, 张雨凡, 周青青, 陈国强, 邢铁玲. 二氧化锰/ 石墨烯/ 棉织物复合电极的制及其电化学性能 [J]. 纺织学报, 2020, 41(01): 96-101.
[12] 陈莹, 周爽, 韦恬静, 方浩霞, 李宇菲. 聚吡咯复合织物的软模板法制备及其性能[J]. 纺织学报, 2019, 40(12): 93-97.
[13] 崔一帆, 侯巍, 周千熙, 闫俊, 路艳华, 何婷婷. 丝胶温敏凝胶对棉织物性能的影响[J]. 纺织学报, 2019, 40(12): 74-78.
[14] 孙玉发, 周向东. 棉用新型含磷氮阻燃剂的合成及其应用[J]. 纺织学报, 2019, 40(12): 79-85.
[15] 王浩, 杜兆芳, 许云辉. 氧化壳聚糖/丝胶复合物的制备及其对棉织物的功能整理[J]. 纺织学报, 2019, 40(11): 119-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!