纺织学报 ›› 2019, Vol. 40 ›› Issue (09): 91-96.doi: 10.13475/j.fzxb.20180907606

• 染整与化学品 • 上一篇    下一篇

前处理工艺对毛/涤织物疏水改性效果的影响

高晶(), 王璐   

  1. 东华大学 纺织面料技术教育部重点实验室, 上海 201620
  • 收稿日期:2018-09-29 修回日期:2019-04-06 出版日期:2019-09-15 发布日期:2019-09-23
  • 作者简介:高晶(1978—),女,教授,博士。主要研究方向为功能纺织面料纳米改性与性能评价。E-mail: gao2001jing@dhu.edu.cn
  • 基金资助:
    国家卫生计生委重大疾病防治科技行动计划—创伤修复专项(2017ZX01001-S22)

Influence of pretreatment process on superhydrophobic modification of wool/polyester fabric

GAO Jing(), WANG Lu   

  1. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2018-09-29 Revised:2019-04-06 Online:2019-09-15 Published:2019-09-23

摘要:

针对毛/涤织物中羊毛和涤纶表面没有足够的反应活性位点,难以进行化学改性,制约了毛/涤织物在超疏水方面的表现等问题,先采用紫外光照射,再用过氧化氢对毛/涤织物进行前处理,使用二氧化硅对毛/涤织物进行疏水改性,通过静态接触角测试、扫描电镜观察、羊毛Allw?rden反应实验等方法分析前处理工艺对织物疏水性能的影响。结果表明:当织物经紫外光照射后再用双氧水处理时,紫外光照射先使羊毛表面拒水性细胞膜消除,双氧水处理进一步破坏了羊毛表面的鳞片层,使羊毛表面暴露出较多的化学反应位点,因此,硅颗粒更容易沉积在羊毛表面,赋予羊毛织物超疏水特性。

关键词: 毛/涤织物, 前处理, 疏水改性, 接触角

Abstract:

The surface of wool and polyester fibers in wool/polyester fabrics does not have enough chemical reactive sites, which lead to difficult chemical modification and also restrict the superhydrophobic performance of wool/polyester fabrics. Therefore, wool/polyester fabrics were irradiated with ultraviolet firstly, then hydrogen peroxide was adopted to pretreat wool/polyester fabrics, and silica was adopted to hydrophobically modify wool/polyester fabrics. The influence of superhydrophobic modification of cotton/polyester fabrics by pretreatment process were explored by the static contact angle test, scanning electron microscopy and wool fiber surface scale analysis. The results show that when fabrics are treated by UV irradiation and then oxidized by hydrogen peroxide, water repellent films of wool surfaces are eliminated by ultraviolet irradiation, and after hydrogen peroxide treatment, scale structure of wool surfaces is further damaged, wool surface exposes more chemical reaction sites, therefore, coverage of silicon particles on the fibers surface is improved to endut wool fabrics with superhydrophobic properties.

Key words: wool/polyester fabric, pretreatment, superhydrophobic modification, contact angle

中图分类号: 

  • TS195.6

表1

织物前处理正交试验因素水平表"

水平 A
H2O2用量/%
B
紫外光功率/W
C
辐射时间/min
1 1 15 5
2 3 100 10
3 5 500 15

图1

紫外光照射装置示意图 1—UVC紫外光照射灯管;2—烧杯。"

表2

不同浓度双氧水溶液的组分及用量"

H2O2
用量/%
H2O2
体积/mL
Na2CO3
质量/g
Na2SiO3·9H2O
质量 /g
H2O
体积/mL
1 1 0.2 0.7 100
3 3 0.2 0.7 100
5 5 0.2 0.7 100

表3

预处理对织物水接触角的影响"

试验号 因子 静态水
接触角yi/(°)
A B C 空白列
1 1 1 1 1 681.6
2 1 2 2 2 708.5
3 1 3 3 3 699.0
4 2 1 2 3 718.8
5 2 2 3 1 728.2
6 2 3 1 2 684.0
7 3 1 3 2 706.4
8 3 2 1 3 750.8
9 3 3 2 1 716.6
K1 2 089.1 2 106.8 2 116.4 2 126.4
K2 2 131.0 2 187.5 2 143.9 2 098.9
K3 2 173.8 2 099.6 2 133.6 2 168.6
R 84.7 87.9 17.2 42.2

表4

影响疏水改性效果的因素方差分析"

方差来源 偏差平方和 自由度 F 显著性
A 153.9 2 6.586 ***
B 232.3 2 9.942 ***
C -59.5 2 -2.547
误差e 444 38

图2

优化预处理后毛/涤织物表面的润湿性"

图3

不同处理毛/涤织物中羊毛表面的Allw?rden反应"

图4

羊毛表面SEM照片"

[1] 吴紫维, 谢柏兵, 潘茜. 毛涤面料表面微观形貌和表面物质成分分析[J]. 毛纺科技, 2013,41(9):6-9.
WU Ziwei, XIE Baibing, PAN Qian. The surface microtopography and composition analysis of wool/polyester clothing[J]. Wool Textile Journal, 2013,41(9):6-9.
[2] 孟金凤, 孟家光, 张琳玫, 等. 毛涤西服面料的自清洁性能[J]. 纺织学报, 2015,36(10):107-112.
MENG Jinfeng, MENG Jiaguang, ZHANG Linmei, et al. Nanometer self-cleaning properties of wool/polyester blended suit fabric[J]. Journal of Textile Research, 2015,36(10):107-112.
[3] 张圣易, 丁志荣, 杨艳艳. 蒸镀超疏水涤纶织物的制备及其疏水性能[J]. 纺织学报, 2017,38(4):85-89,96.
ZHANG Shengyi, DING Zhirong, YANG Yanyan. Preparation and properties of super-hydrophobic polyester fabric by vacuum evaporation[J]. Journal of Textile Research, 2017,38(4):85-89,96.
[4] 薛朝华, 尹伟, 贾顺田. 纤维基超疏水功能表面制备方法的研究进展[J]. 纺织学报, 2012,33(4):146-152.
XUE Chaohua, YIN Wei, JIA Shuntian. Progress in fabrication of fiber-based superhydrophobic surfaces[J]. Journal of Textile Research, 2012,33(4):146-152.
[5] YU M, LI P J, FENG Y F, et al. Positive effect of polymeric silane-based water repellent agents on the durability of superhydrophobic fabrics[J]. Applied Surface Science, 2018,450:492-501.
[6] JIN Y X, KE Q P, JIANG P, et al. Highly efficient oil/water separation and excellent self-cleaning surfaces based on 1-triacontanol-polymerized octadecylsiloxane coatings[J]. Applied Surface Science, 2015,351:358-366.
[7] BANO S, ZULFIQAR U, ZAHEER U, et al. Durable and recyclable superhydrophobic fabric and mesh for oil-water separation[J]. Advanced Engineering Materials, 2018,20(1):1-9.
[8] XIAO X F, CAO G Y, CHEN F X, et al. Durable superhydrophobic wool fabrics coating with nanoscale Al2O3 layer by atomic layer deposition[J]. Applied Surface Science, 2015,349:876-879.
[9] 刘云鸿, 李光吉, 陈超, 等. 超疏水PET织物的制备及其抗菌性能[J]. 化工学报, 2014,65(4):1517-1525.
LIU Yunhong, LI Guangji, CHEN Chao, et al. Prep- aration and antibacterial activity of superhydrophobic PET fabric[J]. CIESC Journal, 2014,65(4):1517-1525.
[10] 刘倩. 羊毛活化改性与漂白及耐光性研究[D]. 杭州:浙江理工大学, 2017: 20.
LIU Qian. The studies on activated modification and bleaching of wool and their photo stability[D]. Hangzhou: Zhejiang Sci-Tech University, 2017: 20.
[11] 唐杰, 吴赞敏. 羊毛高新改性技术的研究进展[J]. 毛纺科技, 2014,42(5):12-15.
TANG Jie, WU Zanmin. Development of high-tech in wool modification[J]. Wool Textile Journal, 2014,42(5):12-15.
[12] 姜为青, 樊理山, 赵彩云, 等. 胶原蛋白改性羊毛纤维力学性能的研究[J]. 上海毛麻科技, 2016(3):7-9.
JIANG Weiqing, FAN Lishan, ZHAO Caiyun, et al. Study on mechanical properties of wool fiber modified with collagen[J]. Shanghai Wool & Jute Journal, 2016 (3):7-9.
[13] HARIFI T, MONTAZER M. TiO2/hematite or magnetite/Ag nanoparticles synthesized on polyester fabric at various temperatures producing different superparam-agnetic, self-cleaning and antibacterial textiles[J]. Scientia Iranica, 2014,21(6):2490-2498.
[14] 虞威. 光化学法羊毛改性及其染色性能研究[D]. 杭州:浙江理工大学, 2014: 24.
YU Wei. Modification of wool using photo chemical method and its dyeing properties[D]. Hangzhou: Zhejiang Sci-Tech University, 2014: 24.
[15] 李健, 杨建忠. 等离子体喷枪辐照羊毛织物后表面接枝改性的初步研究[J]. 上海毛麻科技, 2016(2):11-13,15.
LI Jian, YANG Jianzhong. Preliminary study on wool fabric surface graftmodification by plasma jet irradia-tion[J]. Shanghai Wool & Jute Journal, 2016(2):11-13,15.
[16] 金郡潮, 戴瑾瑾, 梁静. 等离子体处理羊毛织物防毡缩性能的研究[J]. 毛纺科技, 2001 (6):19-23.
JIN Junchao, DAI Jinjin, LIANG Jing. Study on the antishrinkage properly of wool fabrics with plasma treatment[J]. Wool Textile Journal, 2001 (6):19-23.
[17] 朱若英, 滑均凯, 黄故, 等. 紫外线辐射处理的羊毛染色性能研究[J]. 毛纺科技, 2002(3):13-16.
ZHU Ruoying, HUA Junkai, HUANG Gu, et al. Dyeing properties of wool treated by UV radiation[J]. Wool Texti-le Journal, 2002(3):13-16.
[18] WANG X, CAO G Y, XU W L. Improving the hydrop- hilic properties of wool fabrics via corona discharge and hydrogen peroxide treatment[J]. Journal of Applied Polymer Science, 2009,112(4):1959-1966.
[1] 张娟, 郑环达, 乔燕, 高世会, 郑来久. 亚麻粗纱的超临界CO2 煮漂工艺[J]. 纺织学报, 2020, 41(07): 93-100.
[2] 陈莹, 周爽, 韦恬静, 方浩霞, 李宇菲. 聚吡咯复合织物的软模板法制备及其性能[J]. 纺织学报, 2019, 40(12): 93-97.
[3] 苗苗, 王晓旭, 王迎, 吕丽华, 魏春艳. 氧化石墨烯接枝聚丙烯非织造布的制备及其抗静电性[J]. 纺织学报, 2019, 40(11): 125-130.
[4] 张悦, 胡丹玲, 任金娜, 李青. 棉织物低温近中性一浴一步法练漂[J]. 纺织学报, 2019, 40(09): 83-90.
[5] 柳健, 毛金露, 彭丽, 蔡凌云, 郑旭明, 张富山. 聚乙烯-聚丙烯非织造布亲水油剂的性能及其调控[J]. 纺织学报, 2019, 40(09): 114-121.
[6] 周存 何雅僖. 超疏水导电聚酯织物的制备及其性能[J]. 纺织学报, 2018, 39(08): 88-94.
[7] 张灵婕 缪旭红 万爱兰 蒋高明 陈方芳. 上浆前处理剂对经编用棉纱性能的影响[J]. 纺织学报, 2018, 39(04): 82-86.
[8] 向中林 韩雪梅 刘增祥 许长海. 棉织物低温酶氧一浴前处理工艺[J]. 纺织学报, 2017, 38(05): 80-85.
[9] 岳仕芳. 棉/粘弹力交织物的生物酶前处理工艺[J]. 纺织学报, 2016, 37(3): 92-97.
[10] 崔双双 张艳 高加勇 蒋谨繁 左梦迪 阚璇 许长海. 棉织物低温氧漂活化剂的制备[J]. 纺织学报, 2016, 37(07): 88-92.
[11] 赵文杰 张晓云 钟毅 徐红 毛志平. 棉针织物的冷轧堆前处理与染色[J]. 纺织学报, 2016, 37(06): 76-82.
[12] 韩丽 张占柱. 棉织物冷轧堆前处理氧漂活化剂的制备及其应用[J]. 纺织学报, 2015, 36(06): 64-67.
[13] 胡婷莉 黄健平 阎克路 李戎 王建庆 侯爱芹. 酶氧前处理新工艺节能减排效果评估[J]. 纺织学报, 2014, 35(6): 74-0.
[14] 张殿微 崔永珠 王晓 刘国军 魏春艳. 含氟丙烯酸酯乳液的微射流预乳化法[J]. 纺织学报, 2014, 35(2): 47-0.
[15] 殷允杰 王潮霞. UV光开关可控棉织物亲水-疏水表面性能及机制研究[J]. 纺织学报, 2013, 34(2): 120-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!