纺织学报 ›› 2019, Vol. 40 ›› Issue (10): 98-104.doi: 10.13475/j.fzxb.20180604107
陈欣1,2, 张家琳1,2, 王纪冬1,2, 李晓强1,2, 葛明桥1,2()
CHEN Xin1,2, ZHANG Jialin1,2, WANG Jidong1,2, LI Xiaoqiang1,2, GE Mingqiao1,2()
摘要:
针对涤纶醇解液造成的环境污染问题,采用电絮凝技术对其进行脱色。将铝电极和铜电极分别作为电絮凝反应系统的阳极和阴极,研究了电絮凝过程中电解电压、电解质质量浓度、初始pH值以及染料初始质量浓度等因素对脱色率的影响。通过对电极和絮凝体进行相关测试,探讨电絮凝技术的脱色机制,并建立了涤纶醇解液脱色过程的动力学方程。结果表明:在电压为20 V,初始pH值为8,电解质质量浓度为0.80 g/L,染料初始质量浓度为 60 mg/L 的条件下,醇解液的脱色效果较好,电解80 min后脱色率可超过95% 以上;铝电极处理涤纶醇解液的电絮凝过程较吻合动力学二级反应过程。
中图分类号:
[1] | 吴宝宅, 武志云, 汪少朋, 等. 应用二甲基亚砜对废旧聚酯纺织品的脱色[J]. 纺织学报, 2014,35(4):84-87. |
WU Baozhai, WU Zhiyun, WANG Shaopeng, et al. Decolorization of waste polyester textiles with dimethylsulfoxide[J]. Journal of Textile Research, 2014,35(4):84-87.
doi: 10.1177/004051756503500112 |
|
[2] | 李艳艳, 李梦娟, 鲁静, 等. 废弃聚酯醇解液的回收与循环利用[J]. 纺织学报, 2019,40(2):20-25. |
LI Yanyan, LI Mengjuan, LU Jing, et al. Recovery and recycling of waste polyester alcohol solution[J]. Journal of Textile Research, 2019,40(2):20-25. | |
[3] | 王璐, 冯玥, 韦彦斐, 等. 臭氧气泡大小对分散染料废水氧化处理效果的影响[J]. 环境污染与防治, 2013,35(2):11-16. |
WANG Lu, FENG Yue, WEI Yanfei, et al. Effect of ozone bubble size on the oxidation treatment of disperse dye wastewater[J]. Environmental Pollution and Control, 2013,35(2):11-16. | |
[4] | 刘梅红. 印染废水处理技术研究进展[J]. 纺织学报, 2007,28(1):116-119. |
LIU Meihong. Researchprogress of printing and dyeing wastewater treatment technology[J]. Journal of Textile Research, 2007,28(1):116-119. | |
[5] |
LI Y, LI M, LU J, et al. Decoloration of waste PET alcoholysis liquid by an electrochemical method[J]. Water Science and Technology, 2018,77(9/10):2463.
doi: 10.2166/wst.2018.191 |
[6] | 李梦娟, 李艳艳, 鲁静, 等. 聚酯醇解废液的脱色动力学[J]. 化工进展, 2018,37(9):3666-3674. |
LI Mengjuan, LI Yanyan, LU Jing, et al. Decoloriza-tion kinetics of polyesteralcoholysis waste liquid[J]. Chemical Industry and Engineering Progress, 2018,37(9):3666-3674. | |
[7] | 费琼, 王少坡, 罗伟, 等. 电絮凝法在水处理过程中影响因素研究现状[J]. 工业水处理, 2016,36(12):16-21. |
FEI Qiong, WANG Shaopo, LUO Wei, et al. Research status of influencing factors of electrocoagulation in water treatment process[J]. Industrial Water Treatment, 2016,36(12):16-21. | |
[8] | FAJARDO A S, MARTINS R C, SILVA D R, et al. Dye wastewaters treatment using batch and recirculation flow electrocoagulation systems[J]. Journal of Electroanalytical Chemistry, 2017,801:30-37. |
[9] | ZAZOU H, OTURAN N, ZHANG H, et al. Comparative study of electrochemical oxidation of herbici-de 2,4,5-T: kinetics, parametric optimization and mineralization pathway[J]. Sustainable Environment Research, 2017,27(1):15-23. |
[10] | VISHAKHA G, LAXMI D, AMBIKA S, et al. Electrocoagulation technology for high strength arsenic wastewater: process optimization and mechanistic study[J]. Journal of Cleaner Production, 2018,198:693-703. |
[11] |
GOLDER A K, SAMANTA A N, RAY S. Removal of Cr3+ by electrocoagulation with multiple electrodes: bipolar and monopolarconfigurations [J]. Journal of Hazardous Materials, 2007,141(3):653-661.
doi: 10.1016/j.jhazmat.2006.07.025 pmid: 16938395 |
[12] | ZAZOU H, AFANGA H, AKHOUAIRI S, et al. Treatment of textile industry wastewater by electrocoagulation coupled with electrochemical advanced oxidation process[J]. Journal of Water Process Engineering, 2019,28:214-221. |
[13] |
KHORRAM A G, FALLAH N. Treatment of textile dyeing factory wastewater by electrocoagulation with low sludge settling time: optimization of operating parameters by RSM[J]. Journal of Environmental Chemical Engineering, 2018,6(1):635-642.
doi: 10.1016/j.jece.2017.12.054 |
[14] | ESKIBALCI M F, OZKAN M F. Comparison of conventional coagulation and electrocoagulation methods for dewatering of coal preparation plant[J]. Minerals Engineering, 2018,122:106-112. |
[15] | NANDI B K, PATEL S. Effects of operational parameters on the removal of brilliant green dye from aqueous solutions by electrocoagulation[J]. Arabian Journal of Chemistry, 2017,10(S2):961-968. |
[16] | 赵月红, 林乐耘, 刘增才, 等. 铝合金牺牲阳极微观组织的不均匀性对其腐蚀的影响[J]. 稀有金属, 2000(5):341-344. |
ZHAO Yuehong, LIN Yueyun, LIU Zengcai, et al. Influe-nce of microstructure heterogeneity on corrosion of aluminum alloy sacrificial anodes[J]. Rare Metals, 2000(5):341-344. | |
[17] | 常青. 水处理絮凝学[M]. 北京: 化学工业出版社, 2003: 206. |
CHANG Qing. Water Treatment Flocculation [M]. Beijing: Chemical Industry Press, 2003: 206. | |
[18] | 胡亚鲜, KUHN Nikolaus J. 利用土壤颗粒的沉降粒级研究泥沙的迁移与分布规律[J]. 土壤学报, 2017,54(5):1115-1124. |
HU Yaxian, KUHN Nikolaus J. Study on sediment mi-gration and distribution using sediment particle size of soil particles[J]. Journal of Soil Science, 2017,54(5):1115-1124. | |
[19] | 封明, 雷小利. 电解法在废水处理中的应用[J]. 电镀与精饰, 2013,35(1):43-46. |
FENG Ming, LEI Xiaoli. Application of electrolysis inwaste water treatment[J]. Plating & Finishing, 2013,35(1):43-46. | |
[20] | NARIYAN E, AGHABABAEI A, SILLANP M. Re-moval of pharmaceutical from water with an electro-coagulation process; effect of various parameters andstudies of isotherm and kinetic[J]. Separation and Purification Technology, 2017,188:266-281. |
[21] |
DANIAL R, SOBRI S, ABDULLAH L C, et al. FTIR, C-HNS and XRD analyses define mechanism of glyph-osate herbicide removal by electrocoagulation[J]. Chemosphere, 2019,233:559-569.
doi: 10.1016/j.chemosphere.2019.06.010 pmid: 31195261 |
[1] | 吕丽华 毕吉红 于 翔 钱永芳 赵玉萍. 废弃涤纶织物/氯化聚乙烯复合材料的隔声性能[J]. 纺织学报, 2017, 38(08): 50-54. |
[2] | 吕春燕;吕彤;苏秋红;侯立叶;吕小卓. 负载型磺酸铁酞菁对染料废水的光催化降解[J]. 纺织学报, 2009, 30(05): 100-103. |
|