纺织学报 ›› 2019, Vol. 40 ›› Issue (10): 105-112.doi: 10.13475/j.fzxb.20180902108

• 染整与化学品 • 上一篇    下一篇

用水热还原法制备可见光响应TiO2光催化剂

施小平, 李瑶, 潘家豪, 王挺(), 吴礼光   

  1. 浙江工商大学 环境科学与工程学院, 浙江 杭州 310012
  • 收稿日期:2018-09-10 修回日期:2019-07-04 出版日期:2019-10-15 发布日期:2019-10-23
  • 通讯作者: 王挺
  • 作者简介:施小平(1968—), 男,实验师。主要研究方向为环境功能材料及其性能表征。
  • 基金资助:
    国家自然科学基金项目(20806071);国家自然科学基金项目(21776250)

Preparation of visible-light-response TiO2 photocatalyst by hydrothermal reduction

SHI Xiaoping, LI Yao, PAN Jiahao, WANG Ting(), WU Liguang   

  1. School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China
  • Received:2018-09-10 Revised:2019-07-04 Online:2019-10-15 Published:2019-10-23
  • Contact: WANG Ting

摘要:

为获得可见光下高效降解含盐废水中有机污染物的光催化剂,研究了水热还原法对商用TiO2光催化剂(P25)的表面改性,制备出Ti3+掺杂的可见光响应光催化剂,并探索了水热还原法中条件变化对可见光下催化剂降解高含盐废水中甲基橙的影响规律。结果表明:水热还原过程不仅可以去除P25表面的氧化基团,且可以通过还原作用将TiO2结晶态无序化形成异质结结构;TiO2中Ti4+被还原后在催化剂中引入Ti3+拓展了催化剂的可见光响应范围,从而具备可见光催化活性;乙醇作为还原剂进行水热还原处理后,催化剂对甲基橙的降解活性最高,5 h的去除率可达95%,温和的水热还原过程也保证了催化剂的稳定性,在重复光降解实验中,该催化剂对甲基橙5 h去除率均超过90%。

关键词: 光催化剂, Ti3+自掺杂, 可见光响应, 水热还原改性, 废水处理, 甲基橙

Abstract:

Aiing at obtaining a visible-light-response photocatalyst with high contaminants removal in high-salinity wastewater, the surface modification for commercial titania (P25) photocatalyst were studied by hydrothermal reduction, and Ti3+ doped photocatalysts with visible light response were prepared. The influence of changing conditions in hydrothermal reduction on the photodegradation for methyl-orange in high-salinity wastewater using these catalysts was explored under irradiation of visible light. The results show that the hydrothermal reduction can not only remove some oxidized functional groups on the P25 surface, but also forms a heterojunction structure by reducing TiO2 crystals to amorphous TiO2. The introduction of Ti3+ into the catalyst by reducing Ti4+ in TiO2 can expand the visible light response of the catalyst, thereby providing the catalytic activity excited by visible light. The activity of methyl orange of P25 modified by hydrothermal reduction using ethanol is the highest under the excitation of visible light, and the removal rate of 5 h for methyl-orange is up to 95%. In addition, the mild hydrothermal reduction process also ensures the catalyst stability, thus the removal rate of 5 h for methyl-orange exceeds 90% in the repeated photodegradation experiments.

Key words: photocatalyst, Ti3+ self-doping, visible light response, hydrothermal reduction modification, wastewater treatment, methyl orange

中图分类号: 

  • O647

表1

各催化剂对应的制备条件"

催化剂 还原剂 还原方式
P25
H-P25 H2 600 ℃还原
V-P25 抗坏血酸 水热还原
L-P25 柠檬酸钠 水热还原
G-P25 葡萄糖 水热还原
A-P25 乙醇 水热还原

图1

不同光催化剂的红外光谱图"

图2

不同光催化剂的TEM图"

图3

不同光催化剂的HRTEM图"

图4

不同光催化剂的XRD谱图"

图5

不同光催化剂的XPS谱图"

图6

不同光催化剂中Ti2p的XPS谱图"

表2

不同催化剂中C元素的原子含量百分比和Ti元素的价态含量"

催化剂 还原剂 催化剂中C的
原子分数/%
Ti4+原子
分数/%
Ti3+原子
分数/%
P25 10.5 100 0
H-P25 H2 8.3 0 100
V-P25 抗坏血酸 45.8 100 0
L-P25 柠檬酸钠 42.6 100 0
G-P25 葡萄糖 20.3 98.3 1.7
A-P25 乙醇 9.6 92.5 7.5

图7

可见光下不同光催化剂对高含盐废水中甲基橙的降解曲线"

图8

可见光下不同光催化剂对高含盐废水中甲基橙的去除率(5 h)"

图9

催化剂A-P25降解高含盐废水中甲基橙的3次重复实验"

图10

3次重复光降解实验后催化剂A-P25的TEM照片"

[1] VOTSI N P, KALLIMANIS A S, PANTIS I D. An environmental index of noise and light pollution at EU by spatial correlation of quiet and unlit areas[J]. Environmental Pollution, 2017,221(2):459-469.
doi: 10.1016/j.envpol.2016.12.015
[2] 魏亮, 陈小光, 黄波, 等. 偶氮染料废水厌氧生物脱色强化[J]. 纺织学报, 2018,39(8):83-87.
WEI Liang, CHEN Xiaoguang, HUANG Bo, et al. Strengthening on anaerobic biological decolorization of azo dyes wastewater[J]. Journal of Textile Research, 2018,39(8):83-87.
[3] 汪风波, 加毅, 孙正, 等. 聚丙烯酸酯浆料废水处理中试研究[J]. 纺织学报, 2019,40(1):108-113.
WANG Fengbo, JIA Yi, SUN Zheng, et al. Pilot study on treatment of polyacrylate sizing wastewater[J]. Journal of Textile Research, 2019,40(1):108-113.
[4] 王来力, 吴雄英, 丁雪梅, 等. 纺织品及服装的工业水足迹核算与评价[J]. 纺织学报, 2017,38(9):162-167.
WANG Laili, WU Xiongying, DING Xuemei, et al. Calculation and assessment of industrial water footprint of textiles and apparel[J]. Journal of Textile Research, 2017,38(9):162-167.
[5] 李庆, 张莹, 樊增禄, 等. Cu-有机骨架对染料废水的吸附和可见光降解[J]. 纺织学报, 2018,39(2):112-118.
LI Qing, ZHANG Ying, FAN Zenglu, et al. Adsorption and visible-light photodegradation of Cu-organic framework to dye wastewater[J]. Journal of Textile Research, 2018,39(2):112-118.
[6] 吴海培, 高晓红, 方婧, 等. 二氧化钛/还原氧化石墨烯复合材料的制备及其光催化降解脱色性能[J]. 纺织学报, 2018,39(12):78-83.
WU Haipei, GAO Xiaohong, FANG Jing, et al. Preparation and photocatalytic degradation decoloring of TiO2/reduced graphene oxide composites[J]. Journal of Textile Research, 2018,39(12):78-83.
doi: 10.1177/004051756903900112
[7] CUI Y Q, MA Q L, DENG X Y, et al. Fabrication of Ag-Ag2O/reduced TiO2 nanophotocatalyst and its enhanced visible light driven photocatalytic performance for fegradation of diclofenac dolution[J]. Applied Catalysis B: Environmental, 2017,206:136-145.
doi: 10.1016/j.apcatb.2017.01.014
[8] 李冰蕊, 潘家豪, 王挺, 等. 用吸附相反应技术制备弱光响应的铈掺杂TiO2复合光催化剂[J]. 纺织学报, 2018,39(5):67-73.
LI Bingrui, PAN Jiahao, WANG Ting, et al. Preparation of weak-light-driven TiO2 composite photocatalysts by adsorption phase synjournal[J]. Journal of Textile Research, 2018,39(5):67-73.
[9] 莫壮洪, 黄冬根, 全水清, 等. RGO/TiO2光催化降解2,4-二氯苯氧乙酸研究[J]. 环境科学学报, 2016,36(1):178-184.
MO Zhuanghong, HUANG Donggen, QUAN Shuiqing, et al. Preparation of RGO/TiO2 composites materials for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid[J]. Acta Scientiae Circumstantiae, 2016,36(1):178-184.
[10] XU Y X, LUO Y J, QIAN Q R, et al. Simple fabrication of BiOCl/Bi/P25 composite with enhanced visible light photocatalytic activity[J]. Optical Materials, 2017,72(10):691-696.
doi: 10.1016/j.optmat.2017.07.027
[11] DONG C B, ELDAWUD R, WAGNER A, et al. Hybrid nanocomposites with enhanced visible light photocatalyticability for next generation of clean energy systems[J]. Applied Catalysis A: General, 2016,524:77-84.
doi: 10.1016/j.apcata.2016.06.009
[12] CHEN X, LIU L, YU P Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011,331:746-750.
doi: 10.1126/science.1200448 pmid: 21252313
[13] CHEN J, DING Z, WANG C, et al. Black anatase titania with ultrafast sodium-storage performances stimulated by oxygen vacancies[J]. ACS Applied Materials & Interfaces, 2016,8:9142-9151.
doi: 10.1021/acsami.6b01183 pmid: 27006999
[14] SAPUTERA W H, MUL G, HAMDY M S. Ti3+-containing titania: synjournal tactics and photocatalytic performance[J]. Catalysis Today, 2015,246:60-66.
doi: 10.1016/j.cattod.2014.07.049
[15] FANG W Z, XING M Y, ZHANG J L. Modifications on reduced titanium dioxide photocatalysts: a review[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017,32:21-39.
doi: 10.1016/j.jphotochemrev.2017.05.003
[16] CHEN X, LIU L, HUANG F. Black titanium dioxide(TiO2) nanomaterials[J]. Chemical Society Reviews, 2015,44(7):1861-1885.
doi: 10.1039/c4cs00330f pmid: 25590565
[17] 许智勇, 李冰蕊, 潘家豪, 等. TiO2复合催化剂弱光催化降解模拟海水中苯酚及其催化活性的影响[J]. 环境科学学报, 2017,37(12):4593-4601.
XU Zhiyong, LI Bingrui, PAN Jiahao, et al. Photodegradation of phenol in artificial seawater by TiO2 composite catalysts under weak UV irradiation[J]. Acta Scientiae Circumstantiae, 2017,37(12):4593-4601.
[18] LI F T, ZHAO Y, HAO Y J, et al. N-doped P25 TiO2-amorphous Al2O3 composites: one-step solution combustion preparation and enhanced visible-light photocatalytic activity[J]. Journal of Hazardous Materials, 2012(239/240):118-127.
[19] WANG T, ZHU Y C, XU Z Y, et al. Fabrication of weak-room-light-driven TiO2-based catalysts through adsorbed-layer nanoreactor synjournal: enhancing catalytic performance by regulating catalyst structure[J]. Journal of Physical Chemistry, 2016,120:12293-12304.
doi: 10.1021/acs.jpcb.6b09535 pmid: 27934233
[20] XING M Y, FANG W Z, NASIR M, et al. Self-doped Ti3+-enhanced TiO2 nanoparticles with a high-performance photocatalysis[J]. Journal of Catalysis, 2013,297:236-243.
doi: 10.1016/j.jcat.2012.10.014
[21] LI Y J, LI X D, LI J W, et al. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study[J]. Water Research, 2006,40(6):1119-1126.
pmid: 16503343
[22] 邓辉, 蒋新. TiO2/SiO2的制备与光催化降解甲基橙[J]. 纺织学报, 2007,28(9):76-79, 83.
DENG Hui, JIANG Xin. Preparation of TiO2/SiO2 and photo-catalytic degradation of methyl-orange[J]. Journal of Textile Research, 2007,28(9):76-79, 83.
[23] WANG T, JIANG X, WU Y X. Influence of crystallization of nano TiO2 prepared by adsorption phase synjournal on photodegradation of gaseous toluene[J]. Industrial & Engineering Chemistry Research, 2009,48:6224-6228.
[24] LI J R, YANG C H, WU L G, et al. Enhancement on the performance of TiO2 photocatalysts under weak UV light irradiation via adsorbed-layer nanoreactor technique[J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2015,481:413-422.
doi: 10.1016/j.colsurfa.2015.05.038
[1] 钱怡帆, 周堂, 张礼颖, 刘万双, 凤权. 聚丙烯腈/ 醋酸纤维素/ TiO2 复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(05): 8-14.
[2] 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167-173.
[3] 崔桂新, 董永春, 王鹏. 羊毛/铁配合物非均相芬顿反应光催化剂的制备及其应用性能[J]. 纺织学报, 2019, 40(12): 68-73.
[4] 汪风波, 王加毅, 孙正, 马颜雪, 吕迎智, 张魏峰, 吕艳, 吕明明, 陈思雨, 李毓陵, 陈小光. 聚丙烯酸酯浆料废水处理中试研究[J]. 纺织学报, 2019, 40(01): 108-113.
[5] 李冰蕊 潘家豪 王挺 吴礼光 许智勇. 用吸附相反应技术制备弱光响应的铈掺杂TiO2复合光催化剂[J]. 纺织学报, 2018, 39(05): 67-73.
[6] 吉强 王晓 戚俊然 崔永珠 吕丽华. 光接枝丙烯酸棉纤维素基TiO2/C光催化剂的制备与光催化性[J]. 纺织学报, 2017, 38(10): 75-80.
[7] 陈一萍 潘吉特. 碳纳米管/铁氧化物复合材料对模拟染料废水的吸附脱色效果[J]. 纺织学报, 2016, 37(10): 89-93.
[8] 黄旭 张炜栋. 五乙烯六胺改性介孔材料及其在印染废水处理中的应用[J]. 纺织学报, 2015, 36(07): 83-88.
[9] 王挺 汤方鹏 邢俊 毛彦东 吴礼光. 吸附相反应制备过渡金属离子掺杂TiO2光催化剂[J]. 纺织学报, 2013, 34(3): 20-26.
[10] 赵雪婷 董永春 程博闻 康卫民. 铁改性聚丙烯腈纳微米纤维催化剂在偶氮染料降解中的应用[J]. 纺织学报, 2013, 34(10): 76-0.
[11] 杜亮 李子燕 宁平 杜谨宏 左奇丽 姜浩. 利用水生植物处理染料废水的研究进展[J]. 纺织学报, 2012, 33(11): 146-152.
[12] 朱曜峰;王艳;傅雅琴. 二氧化钛/碳纤维多孔薄膜的制备及催化性能[J]. 纺织学报, 2011, 32(4): 23-28.
[13] 杨金库;董永春;郭瑾;刘春燕. 低温制备纳米TiO2溶胶整理棉织物对染料的降解[J]. 纺织学报, 2010, 31(7): 69-73.
[14] 吕春燕;吕彤;苏秋红;侯立叶;吕小卓. 负载型磺酸铁酞菁对染料废水的光催化降解[J]. 纺织学报, 2009, 30(05): 100-103.
[15] 徐英莲;黄龙全;傅雅琴;郑东伟. 棉织物基光催化功能材料制备工艺[J]. 纺织学报, 2008, 29(7): 69-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!