纺织学报 ›› 2019, Vol. 40 ›› Issue (11): 32-37.doi: 10.13475/j.fzxb.20181103806

• 纤维材料 • 上一篇    下一篇

纳米纤维膜基柔性压力传感器的优化设计制备

王杰1,2, 周茗玮1, 汪滨1,2,3(), 李秀艳1   

  1. 1.北京服装学院 材料设计与工程学院, 北京 100029
    2.北京服装学院 服装材料研究开发与评价北京市重点实验室, 北京 100029
    3.北京服装学院 北京市纺织纳米纤维工程技术研究中心, 北京 100029
  • 收稿日期:2018-11-01 修回日期:2019-05-15 出版日期:2019-11-15 发布日期:2019-11-26
  • 通讯作者: 汪滨
  • 作者简介:王杰(1994—),男,硕士生。主要研究方向为纳米纤维膜基柔性传感器。
  • 基金资助:
    国家自然科学基金项目(51503005);国家自然科学基金项目(21274006);北京市自然科学基金项目(2182014);科技北京百名领军人才培养工程项目(Z161100004916168);北京市优秀人才项目(2017000020124G089);北京服装学院高水平教师队伍建设专项资金资助项目(BIFTQG201807)

Optimization design and preparation of nanofiber membrane based flexible pressure sensor

WANG Jie1,2, ZHOU Mingwei1, WANG Bin1,2,3(), LI Xiuyan1   

  1. 1. School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Institute of Fashion Technology,Beijing 100029, China
    3. Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China
  • Received:2018-11-01 Revised:2019-05-15 Online:2019-11-15 Published:2019-11-26
  • Contact: WANG Bin

摘要:

为获得一种灵敏度高、制备工艺简单、轻薄透气的柔性压力传感器,采用静电纺丝热塑性弹性体聚氨酯(TPU)纳米纤维膜为基底和介电层,以碳纳米管导电油墨为电极涂料,通过超声波焊接方式制备三明治结构的纳米纤维膜基柔性压力传感器,并研究其压力传感性能与纳米纤维膜厚度和微观结构之间的关系。结果表明:随着纺丝时间增加,TPU纳米纤维膜厚度增加,拉伸应力增大,断裂伸长率减小;在9.8~49 000 Pa压力范围内,TPU纳米纤维膜基柔性压力传感器灵敏度随纺丝时间增加而减小,当纺丝时间为1 h时,其灵敏度高达4.97 kPa-1,该纳米纤维膜基柔性压力传感器具有灵敏度高、响应范围广的特点。

关键词: 柔性压力传感器, 纳米纤维膜, 静电纺丝, 热塑性弹性体, 聚氨酯

Abstract:

In order to obtain a flexible pressure sensor with high sensitivity, simple preparation process, light weight and air permeability, thermoplastic elastomer polyurethane (TPU) electrospun nanofiber membrane was used as a substrate and a dielectric layer and carbon nanotube conductive ink was used as an electrode coating to prepare a sandwich-structured nanofiber membrane-based flexible pressure sensor by ultrasonic welding. The relationship between pressure sensing properties and nanofiber membrane thickness and microstructure was studied. The results show that with the increasing of spinning time, the thickness and the tensile stress of the nanofiber membrane increase, while the elongation at break decreases. In the pressure range of 9.8-49 000 Pa, the sensitivity of the device decreases with the increase of the spinning time. When the spinning time is 1 h, the sensitivity of the device is up to 4.97 kPa-1. The nanofiber membrane-based flexible pressure sensor has the characteristics of high sensitivity and wide response range.

Key words: flexible pressure sensor, nanofiber membrane, electrospinning, thermoplastic elastomer, polyurethane

中图分类号: 

  • TQ340

图1

柔性压力传感器器件组装示意图"

图2

不同纺丝时间的TPU纳米纤维膜的扫描电镜照片"

图3

不同纺丝时间条件下TPU纳米纤维直径分布图"

图4

不同纺丝时间所得TPU 纳米纤维膜厚度"

图5

TPU纳米纤维膜的应力-应变曲线"

图6

纺丝时间为5 h的TPU纳米纤维膜水接触角"

图7

不同纺丝时间条件下TPU纳米纤维膜为介电层时器件灵敏度随压力的变化趋势"

表1

以不同纺丝时间条件下TPU纳米纤维膜为介电层时器件的灵敏度"

纺丝
时间/h
灵敏度/kPa-1
第1阶段 第2阶段 第3阶段
1 4.97 0.38 0.03
2 3.58 0.25 0.03
3 1.74 0.14 0.02
4 1.11 0.14 0.01
5 0.69 0.08 0.01
[1] 张霆, 刘彩霞, 何亮亮, 等. 基于柔性传感器的青少年健康实时监控系统设计[J]. 实验技术与管理, 2017,34(2):77-79.
ZHANG Ting, LIU Caixia, HE Liangliang, et al. Design of real-time monitoring and control system for adolescent health based on flexible sensor[J]. Experimental Technology and Management, 2017,34(2):77-79.
[2] WANG Z R, WANG S, ZENG J F, et al. High sensitivity, wearable, piezoresistive pressure sensors based on irregular microhump structures and its applications in body motion sensing[J]. Small, 2016,12(28):3827-3836.
pmid: 27280488
[3] 田双太. 一种可穿戴机器人的多传感器感知系统研究[D]. 合肥: 中国科学技术大学, 2011:8-10.
TIAN Shuangtai. Research on multi-sensor perception system of wearable robot[D]. Hefei: University of Science and Technology of China, 2011: 8-10.
[4] MIYAMOTO A, LEE S, COORAY N F, et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes[J]. Nature Technology, 2017,12(9):907-913.
[5] TALAO S, YUSAKU K, TSUYOSHI S, et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes[J]. National Academy of Science, 2005,102(35):12321-12325.
doi: 10.1073/pnas.0502392102
[6] NGUYEN T T, SANGHUN J, DOLL K, et al. A flexible bimodal sensor array for simultaneous sensing of pressure and temperature[J]. Advanced Materials, 2014,26(5):796-804.
pmid: 24493054
[7] CHRISTIAN M, ELGAR F. Flexible foam based capacitive sensor arrays for object detection at low cost[J]. Applied Physics Letters, 2008,92(1):41.
[8] CHWEE L C, MUN B S, BYOUNG S L, et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array[J]. Advanced Materials, 2014,26(21):3451-3458.
pmid: 24536023
[9] TAKESHI Y. Development of a new pressure sensor and its application to the measurement of contacting stress in extrusion[J]. Journal of Materials Processing Technology, 1999,95(1):71-77.
doi: 10.1016/S0924-0136(99)00110-7
[10] 刘昕彤, 高兰恩, 孙超, 等. 新型低温漂电容式角度传感器的研究[J]. 仪表技术与传感器, 2017(6):165-167.
LIU Xintong, GAO Lanen, SUN Chao, et al. Research on novel capacitive angle sensor with low temperature drift[J]. Instrument Technique and Sensor, 2017(6):165-167.
[11] LI T, LUO H, QIN L, et al. Flexible capacitive tactile sensor based on micropatterned dielectric layer[J]. Small, 2016,12(36):5042-5048.
pmid: 27323288
[12] BARMAN S, REESE C, BAO Z N, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J]. Nature Mater, 2010,9(10):859-864.
doi: 10.1038/nmat2834
[13] PAN L J, WANG Y Q, BAO Z N, et al. An ultrasensitive resistive pressure sensor based on hollow sphere microstructure induced elasticity in conducting polymer film[J]. Nature Communication, 2014,5:3002-3010.
doi: 10.1038/ncomms4002
[14] 王永鹏, 刘梦竹, 路大勇, 等. 用静电纺丝法制备可交联高性能聚合物纳米纤维[J]. 纺织学报, 2018,39(1):6-10.
WANG Yongpeng, LIU Mengzhu, LU Dayong, et al. Preparation of crosslinking and high performance polymers nanofibers by electrospinning[J]. Journal of Textile Research, 2018,39(1):6-10.
[15] 仝伟, 方汝仙, 李家炜, 等. 静电纺双疏型聚丙烯腈基纳米纤维膜制备及其性能[J]. 纺织学报, 2019,40(1):1-8.
TONG Wei, FANG Ruxian, LI Jiawei, et al. Preparation and properties of electrostatic spinning double-hydrophobic polyacrylonitrile - based nanofiber membrane[J]. Journal of Textile Research, 2019,40(1):1-8.
doi: 10.1177/004051757004000101
[16] CHEN H, LIN J H, ZHANG N, et al. Preparation of MgAl-EDTA-LDH based electrospun nanofiber membrane and its adsorption properties of copper(II) from wastewater[J]. Journal of Hazardous Materials, 2018,345:1-9.
pmid: 29128721
[17] WANG X F, YU J Y, SUN G, et al. Electrospun nano fibrous materials: a versatile medium for effective oil/water separation[J]. Materials Today, 2016,19(7):403-414.
doi: 10.1016/j.mattod.2015.11.010
[18] XUE J J, NIU Y Z, GONG M, et al. Electrospun microfiber membranes embedded with drug-loaded clay nanotubes for sustained antimicrobial protection[J]. ACS Nano, 2015,9(2):1600-1612.
pmid: 25584992
[19] 王玲, 杨国锐, 王嘉楠, 等. 静电纺丝在钠离子电池中的应用研究进展[J]. 化学学报, 2018,76(9):666-680.
WANG Ling, YANG Guorui, WANG Jia'nan, et al. Research progress on electrospun materials for sodium-ion batteries[J]. Acta Chemica Sinica, 2018,76(9):666-680.
[20] WANG J, JIU J T, NOGI M, et al. A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires[J]. Nanoscale, 2015,7(7):2926-2932.
doi: 10.1039/c4nr06494a pmid: 25588044
[21] YANG W, LI N W, ZHAO S Y, et al. A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins[J]. Advanced Materials Technologies, 2017,3(2):1700241.
doi: 10.1002/admt.201700241
[22] 洪剑寒, 韩潇, 陈建广, 等. 聚对苯二甲酸丙二醇酯/聚苯胺复合导电纱的电学与力学性能[J]. 纺织学报, 2017,38(2):40-46.
HONG Jianhan, HAN Xiao, CHEN Jianguang, et al. Electrical and mechanical properties of polypropylene terephthalate/polyaniline conductive yarn[J]. Journal of Textile Research, 2017,38(2):40-46.
[1] 潘璐, 程亭亭, 徐岚. 聚己内酯/ 聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[2] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[3] 段红梅, 汪希铭, 黄子欣, 高晶, 王璐. 纤维基介孔SiO2 药物载体的构建及其释药性能[J]. 纺织学报, 2020, 41(07): 15-22.
[4] 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2 纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173.
[5] 刘国金, 石峰, 陈新祥, 张国庆, 周岚. 聚氨酯/ 相变蜡蓄热调温功能整理剂的制备及其在棉织物上的应用[J]. 纺织学报, 2020, 41(07): 129-134.
[6] 王亚停, 赵家琪, 王碧佳, 冯雪凌, 钱国春, 隋晓锋. 超细纤维合成革的染色与功能整理研究进展[J]. 纺织学报, 2020, 41(07): 188-196.
[7] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[8] 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/ 聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26.
[9] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[10] 洪贤良, 陈小晖, 张建青, 刘俊杰, 黄晨, 丁伊可, 洪慧. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(06): 174-182.
[11] 王婷婷, 刘梁, 曹秀明, 王清清. 竹红菌素-聚( 甲基丙烯酸甲酯-co-甲基丙烯酸)纳米纤维的制备及其光敏抗菌性能[J]. 纺织学报, 2020, 41(05): 1-7.
[12] 孙范忱, 郭静, 于跃, 张森. 聚羟基脂肪酸酯/ 海藻酸钠纳米纤维的制备及其性能[J]. 纺织学报, 2020, 41(05): 15-19.
[13] 许黛芳. 磷酸改性芳纶对聚氨酯硬质泡沫阻燃抑烟性能的影响[J]. 纺织学报, 2020, 41(05): 30-37.
[14] 张一敏, 周伟涛, 何建新, 杜姗, 陈香香, 崔世忠. 偕胺肟化SiO2 / 聚丙烯腈复合纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(05): 25-29.
[15] 钱怡帆, 周堂, 张礼颖, 刘万双, 凤权. 聚丙烯腈/ 醋酸纤维素/ TiO2 复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(05): 8-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!