纺织学报 ›› 2019, Vol. 40 ›› Issue (11): 88-93.doi: 10.13475/j.fzxb.20181002206

• 染整与化学品 • 上一篇    下一篇

大麻纤维草酸铵-酶联合脱胶工艺

郑振荣1,2(), 智伟1, 邢江元1, 杜换福2, 徐子健1   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.山东滨州亚光毛巾有限公司, 山东 滨州 256600
  • 收稿日期:2018-10-11 修回日期:2019-05-20 出版日期:2019-11-15 发布日期:2019-11-26
  • 作者简介:郑振荣(1981—),女,副教授,博士。主要研究方向为功能防护纺织品的开发。E-mail: tianjinzhengzr@163.com
  • 基金资助:
    中国纺织工业联合会科技指导性项目(2017030);天津市大学生创新创业训练计划项目(201810058084);天津科委自然科学基金项目(18JCYBJC86600)

Ammonium oxalate-enzyme combining degumming process of hemp fiber

ZHENG Zhenrong1,2(), ZHI Wei1, XING Jiangyuan1, DU Huanfu2, XU Zijian1   

  1. 1. College of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Shandong Binzhou Yaguang Towel Co., Ltd., Binzhou, Shandong 256600, China
  • Received:2018-10-11 Revised:2019-05-20 Online:2019-11-15 Published:2019-11-26

摘要:

为开发绿色高效的大麻脱胶工艺,提出了草酸铵-酶联合脱胶,采用正交试验优化草酸铵脱胶工艺,并与经传统化学脱胶工艺、化学-酶联合脱胶工艺处理后大麻纤维的脱胶效果进行比较,得到草酸铵-酶联合脱胶最佳工艺条件:草酸铵质量浓度为4.0 g/L,保温温度为100 ℃,保温时间为50 min。结果表明:经最佳工艺处理后大麻纤维的残胶率为2.34%,低于经传统化学脱胶后大麻纤维的残胶率12.88%和化学-酶联合脱胶后大麻纤维的残胶率8.43%;草酸铵-酶联合脱胶后大麻纤维中木质素质量分数由8.10%(大麻原麻)下降到0.94%,断裂强度为10.31 cN/dtex,且白度优于传统化学脱胶工艺和化学-酶联合脱胶工艺处理后的大麻纤维。

关键词: 大麻纤维, 草酸铵, 生物酶, 脱胶工艺, 残胶率

Abstract:

In order to develop a green and efficient hemp degumming process, a combining degumming process using ammonium oxalate and enzyme was proposed. The ammonium oxalate degumming process was optimized using the orthogonal test, and the degumming effect of hemp fiber treated by ammonium oxalate-enzyme method was compared with that of hemp fiber treated by the traditional chemical method and that of hemp fiber treated by the chemical-enzyme method. Results show that the optimum conditions of ammonium oxalate-enzyme combining degumming method are the concentration of ammonium oxalate is 4.0 g/L, holding temperature is 100 ℃ and holding time is 50 min; The residual gel rate of hemp fiber treated by the best technology of ammonium oxalate-enzyme combining degumming process is 2.34%, which is lower than that of hemp fiber treated by the traditional chemical combining degummin process (12.88%) and that of hemp fiber treated by the chemical-enzyme combining degumming process (8.43%); After being treated by the optimal process of ammonium oxalate-enzyme combining degumming process, the lignin content of hemp fiber decrease from 8.10% (marijuana) to 0.94%, the breaking strength of hemp fiber is 10.31 cN/dtex, and the whiteness of hemp fiber is superior to that of hemp fiber treated by the traditional chemical degumming process and that of hemp fiber treated by the chemical-enzyme combining degumming process.

Key words: hemp fiber, ammonium oxalate, enzyme, degumming process, residual gel rate

中图分类号: 

  • TS192.4

表1

草酸铵脱胶正交试验因素水平表"

水平 A
草酸铵质量浓度/(g·L-1)
B
保温温度/℃
C
保温时间/min
1 3.5 80 40
2 4.0 90 45
3 4.5 100 50

表2

草酸铵-酶脱胶法正交试验分析"

试验号 A
草酸铵质量
浓度
B
保温
温度
C
保温
时间
残胶
率/%
1 1 1 1 24.34
2 1 2 2 18.94
3 1 3 3 14.14
4 2 1 2 18.74
5 2 2 3 11.54
6 2 3 1 8.94
7 3 1 3 18.94
8 3 2 1 17.14
9 3 3 2 9.14
均值1 19.140 20.673 16.807
均值2 13.073 15.873 15.607
均值3 15.073 10.740 14.873
极差R 6.067 9.933 1.934

表3

残胶率与白度对比"

脱胶工艺 残胶率/% 白度/%
漂前 漂后
传统化学 12.88 46.30 51.93
化学-酶 8.43 49.29 55.76
草酸铵-酶 2.34 53.73 59.45

图1

草酸铵-酶脱胶处理前后大麻纤维的微观结构(×300)"

图2

草酸铵-酶脱胶各阶段的大麻纤维断裂强度 1—超声波处理后;2—草酸铵处理后;3—酸性果胶酶处理后;4—甘露聚糖酶及木聚糖酶处理后。"

[1] 李闲闲. 汉麻纤维酶辅助高温高压新型脱胶工艺研究[D]. 太原:太原理工大学, 2015: 2-3.
LI Xianxian. Study on new degumming process of high temperature and high pressure supported by hemp fiber enzyme[D]. Taiyuan: Taiyuan University of Technology, 2015: 2-3.
[2] 欧阳兆锋, 朱士凤, 田明伟, 等. 碱氧一浴脱胶法功能性大麻纤维的研究[J]. 山东纺织科技, 2018,59(2):5-7.
OUYANG Zhaofeng, ZHU Shifeng, TIAN Mingwei, et al. Study on functional hemp fiber by alkaline oxygen one bath degumming[J]. Shandong Textile Technology, 2018,59(2):5-7.
[3] 包肖婧, 曲丽君, 郭肖青, 等. 微波辐照大麻脱胶中的非热效应[J]. 纺织学报, 2014,35(1):67-71.
BAO Xiaojing, QU Lijun, GUO Xiaoqing, et al. Non-thermal effect of microwave irradiation in degumming process of hemp fiber[J]. Journal of Textile Research, 2014,35(1):67-71.
[4] SEMHAOUI I, MAUGARD T, ZARGUILI I, et al. Eco-friendly process combining acid-catalyst and thermomechanical pretreatment for improving enzymatic hydrolysis of hemp hurds[J]. Bioresource Technology, 2018,257:192-200.
pmid: 29501952
[5] 郭小敏. 漆酶与碱联合脱胶技术对汉麻残胶的影响与脱胶工艺优化[D]. 上海:东华大学, 2017: 1-4.
GUO Xiaomin. Effect of laccase and alkali combined degumming technology on hemp residual rubber and optimization of degumming process[D]. Shanghai: Donghua University, 2017: 1-4.
[6] 李闲闲, 罗玉成, 赵宇航, 等. 新型工艺对汉麻纤维性能的影响[J]. 纺织导报, 2015(7):72-75.
LI Xianxian, LUO Yucherng, ZHAO Yuhang, et al. The effect of new process on hemp properties[J]. China Textile Leader, 2015(7):72-75.
[7] 邓云红. 麻纤维化学脱胶前后结构和性能的研究[D]. 上海:东华大学, 2014: 6-8.
DENG Yunhong. Study on the structure and property of hemp fibers with untreated and chemical degum-ming[D]. Shanghai: Donghua University, 2014: 6-8.
[8] 蔡侠, 熊和平, 严理, 等. 大麻微生物-蒸汽爆破联合脱胶技术[J]. 纺织学报, 2011,32(7):75-79.
CAI Xia, XIONG Heping, YAN Li, et al. Combined degumming technology of microbes-steam explosion for hemp fiber[J]. Journal of Textile Research, 2011: 32(7):75-79.
[9] KHAN B A, WARNER P, WANG H. Antibacterial properties of hemp and other natural fibre plants: a review[J]. Bioresources, 2014,9(2):3642-3659.
[10] 赵欣, 刘琨, 程金亮, 等. 不同非离子表面活性剂对生物酶处理大麻纤维的工艺探究[J]. 毛纺科技, 2017,45(8):44-47.
ZHAO Xin, LIU Kun, CHENG Jinliang, et al. Study on the process of biological enzyme treatment of hemp fiber by different nonionic surfactants[J]. Wool Textile Journal, 2017,45(8):44-47.
[11] FANG Gang, CHEN Honggao, CHEN Anqi, et al. An efficient method of bio-chemical combined treatment for obtaining high-quality hemp fiber[J]. Bioresources, 2017,12(1):1566-1578.
[12] LIU Liu, XIANG Yeping, ZHANG Ruiyun, et al. Tempo-media oxidation combined with laccase for effectivedegumming pretreatment of hemp fibers[J]. Bioresources, 2017,12(4):8848-8861.
[13] 全琼瑛. 大麻脱胶机理与脱胶方法的优化[J]. 中国纤检, 2013(1):87-88.
QUAN Qiongying. Degumming mechanism for hemp fiber and optimization of degumming method[J]. China Fiber Inspection, 2013(1):87-88.
[14] 陶艳丽, 高路, 王晓双, 等. 超声波协同草酸铵法提取香蕉皮中果胶的研究[J]. 粮食与油脂, 2015,28(3):63-65.
TAO Yanli, GAO Lu, WANG Xiaoshuang, et al. Study on ultrasonic extraction of pectin from banana skin by cobalt ammonium oxalate[J]. Grain and Fat, 2015,28(3):63-65.
[15] 李英, 郭宗明, 李立红, 等. 草酸铵法提取冬瓜皮果胶及其理化性质研究[J]. 食品研究与开发, 2017,38(20):47-50.
LI Ying, GUO Zongming, LI Lihong, et al. Extraction of winter melon pectin by ammonium oxalate and its physicochemical properties[J]. Food Research and Development, 2017,38(20):47-50.
[1] 张悦, 胡丹玲, 任金娜, 李青. 棉织物低温近中性一浴一步法练漂 [J]. 纺织学报, 2019, 40(09): 83-90.
[2] 张淑梅 姬春林 殷秀梅 潘峰 毛鑫磊. 羊毛生物酶联合防毡缩整理[J]. 纺织学报, 2018, 39(11): 85-90.
[3] 王宗乾 杨海伟 王邓峰. 脱胶对蚕丝纤维的溶解及丝素蛋白性能的影响[J]. 纺织学报, 2018, 39(04): 69-76.
[4] 石大为 王瑞 陈旭 吴炳洋. 基于射频处理的胡麻生物脱胶工艺[J]. 纺织学报, 2018, 39(03): 73-78.
[5] 刘建勇 吴胜争 赵笑康. 生物酶协同催化体系及其对羊毛纤维的作用机制[J]. 纺织学报, 2018, 39(01): 71-78.
[6] 吴惠英. 脱胶工艺对蚕丝溶解及再生丝素蛋白纤维性能的影响[J]. 纺织学报, 2017, 38(08): 75-80.
[7] 张娟 高世会 施楣梧 郑来久 熊小庆 闫俊. 亚麻粗纱超临界二氧化碳无水煮漂技术研究进展[J]. 纺织学报, 2017, 38(05): 163-169.
[8] 刘笑莹 方斌 朱守艾 程隆棣 张瑞云 俞建勇. 棉/大麻纤维混纺低损耗工艺优化[J]. 纺织学报, 2017, 38(01): 35-39.
[9] 岳仕芳. 棉/粘弹力交织物的生物酶前处理工艺[J]. 纺织学报, 2016, 37(3): 92-97.
[10] 钟智丽 朱敏 张宏杰 翁琦. 大麻纤维在氯化锂/N,N-二甲基乙酰胺溶解体系中的溶解特性[J]. 纺织学报, 2016, 37(11): 92-97.
[11] 陈美玉 来侃 孙润军 陈立成 王玉. 大麻/聚乳酸复合发泡材料的力学性能[J]. 纺织学报, 2016, 37(01): 28-34.
[12] 胡婷莉 黄健平 阎克路 李戎 王建庆 侯爱芹. 酶氧前处理新工艺节能减排效果评估[J]. 纺织学报, 2014, 35(6): 74-0.
[13] 包肖婧 曲丽君 郭肖青 田明伟. 微波辐照大麻脱胶中的非热效应[J]. 纺织学报, 2014, 35(1): 67-0.
[14] 盛冠忠 蒋少军 钟少锋 楼永平 张奇鹏. 棉秆皮机械-生物酶联合脱胶工艺[J]. 纺织学报, 2013, 34(2): 95-100.
[15] 杨自平, 张建春, 张华, 张晓霞, 高志强. 基于PAS2050规范的大麻纤维产品碳足迹测量分析[J]. 纺织学报, 2012, 33(8): 140-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!