纺织学报 ›› 2019, Vol. 40 ›› Issue (11): 69-74.doi: 10.13475/j.fzxb.20181106706

• 纺织工程 • 上一篇    下一篇

基于六边形网格结构的针织物三维建模

杨恩惠, 邱华(), 代文杰   

  1. 生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
  • 收稿日期:2018-11-24 修回日期:2019-05-10 出版日期:2019-11-15 发布日期:2019-11-26
  • 通讯作者: 邱华
  • 作者简介:杨恩惠(1994—),女,硕士生。主要研究方向为针织物热湿舒适性的仿真。

Three-dimensional modeling and analysis of knitted fabric based on hexagonal mesh structure

YANG Enhui, QIU Hua(), DAI Wenjie   

  1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2018-11-24 Revised:2019-05-10 Online:2019-11-15 Published:2019-11-26
  • Contact: QIU Hua

摘要:

为方便快捷地构造出接近针织物真实线圈的三维几何模型,提出一种基于六边形网格结构理论的方法。首先根据针织线圈穿套时形成的交织点,构建出六边形网格结构,由此确定每个线圈单元的8个特殊型值点,并根据纱线线密度和织物厚度通过三角函数关系求得型值点的具体坐标。其次将型值点插入非均匀有理B样条曲线,利用反算法推算出控制顶点及确认最终纱线路径,并进行扫面操作形成单个纱线线圈。最后通过阵列方法依次重复排列,得到特定组织循环的针织三维模型,并且对单元模型进行导热分析。结果表明,最终模拟计算结果与实际测量值的误差在4%以内,所建模型具有较好的实用性和合理性。

关键词: 针织物, 线圈, 六边形网格, 三维模型, 型值点, 模拟分析

Abstract:

In order to create a 3-D geometric model close to the real loop of knitted fabric more conveniently, a method based on hexagonal mesh structure theory was proposed. A hexagonal mesh structure was constructed according to the interleaving points formed when knitting loops were interlaced, and eight special value points were determined for each loop unit. Then the specific coordinates of the type value points were acquired according to the yarn fineness and fabric thickness by a trigonometric function relation, and the type value points were inserted into the non-uniform rational B-spline curve. The inverse algorithm was adopted to calculate the control point and the final yarn path was confirmed, and a single yarn loop was formed by section scanning. The fabric 3-D model of specific structure circulation was obtained by sequentially repeatedly arranging by an array method. The finite element heat conduction analysis of the element model was then carried out. The results show that the error between the simulation result and the actual measurement value is less than 4%, the model is practical and reasonable.

Key words: knitted fabric, loop, hexagonal mesh, 3-D model, data point, simulation analysis

中图分类号: 

  • TS101.1

图1

线圈的六边形网格结构示意图"

图2

线圈型值点示意图"

图3

显微镜下线圈图片"

表1

型值点坐标"

型值点 X轴坐标值 Y轴坐标值 Z轴坐标值
P1 0.000 0.000 0.000
P2 0.112 0.216 0.269
P3 -0.002 0.432 0.269
P4 0.110 0.648 0.000

图4

针织物模型与实物正反面对比图"

图5

织物正反面的温度分布情况"

[1] 石艳红, 李登高. 针织CAD软件的应用与研究[J]. 毛纺科技, 2012,40(3):23-25.
SHI Yanhong, LI Denggao. Application and research of knitted CAD software[J]. Wool Textile Journal, 2012,40(3):23-25.
[2] 高梓越, 丛洪莲, 蒋高明. 基于互联网的针织CAD系统设计与开发[J]. 纺织导报, 2016(7):46-47,50-52.
GAO Ziyue, CONG Honglian, JIANG Gaoming. Design and development of CAD system based on Internet [J]. China Textile Leader, 2016(7): 46-47, 50-52.
[3] 姚晓林. 智能针织CAD提花档案制作工艺[J]. 针织工业, 2018(3):10-13.
YAO Xiaolin. Production process of intelligent knitted CAD jacquard files[J]. Knitting Industries, 2018 (3):10-13.
[4] 杨允出, 李基拓, 陆国栋. 机织物组织图的数学描述与3维几何建模[J]. 中国图象图形学报, 2014,19(10):1524-1531.
YANG Yunchu, LI Jituo, LU Guodong. Mathematical description and 3D geometric modeling of woven fabric organization chart[J]. Chinese Journal of Image Graphics, 2014,19(10):1524-1531.
[5] 王旭. 机织物组织结构的三维建模方法研究[J]. 河南工程学院学报(自然科学版), 2013,25(1):6-10.
WANG Xu. Study on 3D modeling method of woven fabric structure[J]. Journal of Henan Institute of Engineering (Natural Science Edition), 2013,25(1):6-10.
[6] 蔡雨, 郑天勇, 景书娟, 等. Peirce平纹机织物结构模型的计算精确度[J]. 纺织学报, 2012,33(1):48-53.
CAI Yu, ZHENG Tianyong, JING Shujuan, et al. Computation accuracy of Peirce plain woven fabric structure model[J]. Journal of Textile Research, 2012,33(1):48-53.
[7] PEIRCE F T. Geometrical principles applicable to the design of functional fabrics[J]. Textile Research Journal, 1947,17(3):147.
[8] MUNDEN D L. Geometry and dimensional properties of plain-knit fabrics[J]. Journal of The Textile Institute, 1959,50(7):448-471.
[9] KURBAK A, ALPYIDIZ T. A geometrical model for the double lacosteknits[J]. Textile Research Journal, 2008,78(3):232-247.
doi: 10.1177/0040517507081306
[10] 瞿畅, 王君泽, 李波. 纬编针织物基本组织的计算机三维模拟[J]. 纺织学报, 2009,30(11):136-140.
QU Chang, WANG Junze, LI Bo. Computer simulation of basic structure of weft knitted fabric[J]. Journal of Textile Research, 2009,30(11):136-140.
[11] 蒙冉菊, 方园. NURBS样条曲线纬编针织物线圈结构的建模分析[J]. 浙江理工大学学报, 2007(3):219-224.
MENG Ranju, FANG Yuan. Modeling and analysis of NURBS spline curve weft knitted fabric coil structure[J]. Journal of Zhejiang Sci-Tech University, 2007(3):219-224.
[12] 徐海燕, 陈南梁. 基于弹性杆理论的纬平针织物三维建模[J]. 针织工业, 2015(7):56-59.
XU Haiyan, CHEN Nanliang. 3D modeling of weft knitted fabric based on elastic rod theory[J]. Knitting Industries, 2015 (7):56-59.
[13] 徐海燕, 蒋金华, 陈南梁. 基于TexGen的经编针织物的三维仿真[J]. 纺织学报, 2015,36(3):140-146.
XU Haiyan, JIANG Jinhua, CHEN Nanliang. Three-dimensional simulation of warp knitted fabric based on TexGen[J]. Journal of Textile Research, 2015,36(3):140-146.
[14] 汝欣, 彭来湖, 吕明来, 等. 纬编针织物几何建模及其算法[J]. 纺织学报, 2018,39(9):44-49.
RU Xin, PENG Laihu, LÜ Minglai, et al. Geometric modeling and algorithm of weft knitted fabric[J]. Journal of Textile Research, 2018,39(9):44-49.
[15] RAJAB K, PIEGL L A, SMARODZINAVA V. CAD model repair using knowledge-guided NURBS[J]. Engineering with Computers, 2013,29(4):477-486.
doi: 10.1007/s00366-012-0264-z
[16] 刘润泽, 张晓东, 安柏涛, 等. 非均匀有理B样条曲线及节点插入算法在透平叶片优化设计中的应用[J]. 航空动力学报, 2010,25(2):451-458.
LIU Runze, ZHANG Xiaodong, AN Baitao, et al. Application of non-uniform rational B-spline curve and node insertion algorithm in optimal design of turbine blade[J]. Journal of Aerodynamics, 2010,25(2):451-458.
[17] 施法中. 计算机辅助几何设计与非均匀有理 B 样条[M]. 北京: 高等教育出版社, 2001: 47.
SHI Fazhong. Computer-aided Geometry Design and Non-uniform Rational B-spline[M]. Beijing: Higher Education Press, 2001: 47.
[18] 吴佳佳, 唐虹. 应用ABAQUS的织物热传递有限元分析[J]. 纺织学报, 2016,37(9):37-41.
WU Jiajia, TANG Hong. Finite element analysis of fabric heat transfer using ABAQUS[J]. Journal of Textile Research, 2016,37(9):37-41.
[19] 李瑛慧, 谢春萍, 刘新金, 等. 仿真丝织物与真丝织物的热传递有限元仿真[J]. 丝绸, 2017,54(12):7-11.
LI Yinghui, XIE Chunping, LIU Xinjin, et al. Finite element simulation of heat transfer between silk fabric and silk fabric[J]. Journal of Silk, 2017,54(12):7-11.
[1] 陈佳颖, 田旭, 彭晶晶, 方彤, 高伟洪. 针织物表面结构色的构建[J]. 纺织学报, 2020, 41(07): 117-121.
[2] 熊祥章, 裴泽光, 陈革. 基于形状记忆合金丝包覆纱的针织物致动器研究[J]. 纺织学报, 2020, 41(05): 50-57.
[3] 尉腾祥, 李敏, 彭虹云, 付少海. 纬平针棉针织物平幅丝光条件与其线圈结构的关系[J]. 纺织学报, 2020, 41(04): 98-105.
[4] 张佳慧, 王建萍. 圆形纬编针织物电极导电性能及电阻理论模型构建[J]. 纺织学报, 2020, 41(03): 56-61.
[5] 王小艳, 杜金梅, 彭铃淇, 荆丽丽, 许长海. 涤纶针织物碱减量和染色一浴一步法工艺 [J]. 纺织学报, 2020, 41(01): 80-87.
[6] 王秋平, 毛志平, 钟毅, 徐红, 张琳萍. 平幅轧染中针织物形变对染色的影响[J]. 纺织学报, 2019, 40(11): 94-99.
[7] 王旭, 杜增锋, 王翠娥, 倪庆清, 刘新华. 贯穿正交机织物结构的参数化三维建模[J]. 纺织学报, 2019, 40(11): 57-63.
[8] 尉腾祥, 李敏, 彭虹云, 付少海. 纬平棉针织物双向拉伸线圈形态分析[J]. 纺织学报, 2019, 40(11): 64-68.
[9] 何青青, 徐红, 毛志平, 张琳萍, 钟毅, 吕景春. 高导电性聚吡咯涂层织物的制备[J]. 纺织学报, 2019, 40(10): 113-119.
[10] 林佳濛, 缪旭红, 万爱兰. 等离子体预处理对聚吡咯/ 涤纶经编导电织物结构和性能的影响 [J]. 纺织学报, 2019, 40(09): 97-101.
[11] 张帆 张儒 周文常 周辉 汪南方. 金属铜配合物催化双氧水用于棉针织物的低温漂白[J]. 纺织学报, 2019, 40(08): 101-108.
[12] 徐成书 吴梦婷 任燕 邢建伟 蔡再生 欧阳磊. 线性聚醚嵌段氨基硅油的制备及其性能[J]. 纺织学报, 2019, 40(08): 89-94.
[13] 陶开鑫 俞成丙 侯颀骜 吴聪杰 刘引烽. 基于最小二乘支持向量机的棉针织物活性染料湿蒸染色预测模型[J]. 纺织学报, 2019, 40(07): 169-173.
[14] 吴义伦 李忠健 潘如如 高卫东 张宁. 应用色纺纱图像的纬编针织物外观模拟[J]. 纺织学报, 2019, 40(06): 111-116.
[15] 马振萍 毛志平 钟毅 徐红 . 单面纬平针织物平幅轧蒸染色防卷边控制 [J]. 纺织学报, 2019, 40(05): 91-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!