纺织学报 ›› 2019, Vol. 40 ›› Issue (11): 64-68.doi: 10.13475/j.fzxb.20181102906

• 纺织工程 • 上一篇    下一篇

纬平棉针织物双向拉伸线圈形态分析

尉腾祥1,2, 李敏1,2, 彭虹云1,2, 付少海1,2()   

  1. 1.江苏省纺织品数字喷墨印花工程技术研究中心, 江苏 无锡 214122
    2.生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
  • 收稿日期:2018-11-12 修回日期:2019-05-10 出版日期:2019-11-15 发布日期:2019-11-26
  • 通讯作者: 付少海
  • 作者简介:尉腾祥(1994—),男,硕士生。主要研究方向为针织物平幅丝光线圈形态变化规律。
  • 基金资助:
    国家重点研发计划资助项目(2017YFB0309701)

Shape analysis of biaxial stretching coil of weft plain knitted cotton fabric

WEI Tengxiang1,2, LI Min1,2, PENG Hongyun1,2, FU Shaohai1,2()   

  1. 1. Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Wuxi, Jiangsu 214122, China
    2. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2018-11-12 Revised:2019-05-10 Online:2019-11-15 Published:2019-11-26
  • Contact: FU Shaohai

摘要:

针对纬平针织物在平幅丝光过程中线圈拉伸易变形的问题,对丝光前纬平棉针织物进行了双向拉伸,研究不同拉伸条件下线圈形态变化规律,同时采用网格法将织物分成不同的单元,分析双向拉伸条件下不同单元的位移矢量、圈距、圈高、形态系数、剪切角等结构参数沿拉伸方向的变化规律。结果表明:织物形变较小的区域呈椭圆形,且随着拉伸张力的增加,椭圆区域面积逐渐变小,圈距和圈高均符合抛物线的变化规律,形态系数呈周期性梯度分布,线圈最大剪切角变小,且所有剪切角减小的趋势变缓。

关键词: 纬平棉针织物, 网格法, 双向拉伸, 线圈形态, 结构参数

Abstract:

In view of the problem that the coil is deformed easily in the process of smooth mercerization, the weft plain knitted cotton fabric before mercerizing was stretched bilaterally, the shape changes of coils under different tensile conditions were studied. The fabric was divided into different units by a grid method, and the change rule of the displacement vector, coil spacing, coil height, shape coefficient and shear angle of different elements under biaxial stretching were studied. The results show that the less deformed region of fabric is elliptical, and with the tensile tension increases, ellipse area reduces, and the coil spacing and the coil height obey the trend of the parabola; the coil shape coefficient has a periodic gradient distribution, the maximum shear angle of the fabric decreases, and all the shear angles decrease slowly.

Key words: weft plain knitted cotton fabric, grid method, biaxial stretching, coil shape, structural parameter

中图分类号: 

  • TS181

图1

实验丝光架"

图2

剪切角示意图"

图3

不同扩幅条件下织物的节点向量场和位移场"

图4

中心线上织物单元横纵向的圈距和圈高"

表1

圈距和圈高的拟合方程"

织物单元 扩幅/% 方程 R2
横向圈距 5 Y=7.352 32-0.048 09X+0.002 29X2 0.992 84
10 Y=7.610 91-0.068 16X+0.003 25X2 0.959 65
15 Y=8.020 49-0.083 59X+0.003 98X2 0.988 68
横向圈高 5 Y=7.250 81-0.011 67X+0.000 555 9X2 0.980 95
10 Y=7.416 49-0.018 13X+0.000 863 5X2 0.990 77
15 Y=7.967 09-0.019 11X+0.000 910 2X2 0.950 47
纵向圈距 5 Y=7.164 67-0.014 09X+0.000 670 9X2 0.983 38
10 Y=7.411 58-0.027 7X+0.001 32X2 0.991 03
15 Y=7.721 89-0.022 61X+0.001 08X2 0.987 34
纵向圈高 5 Y=7.380 11-0.037 39X+0.001 78X2 0.992 84
10 Y=7.609 68-0.056 91X+0.002 71X2 0.959 65
15 Y=8.082 25-0.039 07X+0.001 86X2 0.988 68

图5

横向和纵向中心线上各单元的形态系数"

图6

不同扩幅条件下织物所有单元的形态系数"

图7

不同扩幅条件下织物所有单元的剪切角"

[1] MOGHASSEM A R, BAKHSHI M R. Dimensional stabilization of cotton plain weft knitted fabric using mercerization treatment[J]. Fibers and Polymers, 2009,10(6):847-854.
doi: 10.1007/s12221-009-0847-5
[2] KIM J T, NETRAVALI A N. Mercerization of sisal fibers: effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites[J]. Composites Part A: Applied Science & Manufacturing, 2010,41(9):1245-1252.
[3] LI X K, BAI S L. Sheet forming of the multi-layered biaxial weft knitted fabric reinforcement: part I: on hemispherical surfaces[J]. Composites Part A: Applied Science & Manufacturing, 2009,40(6):766-777.
[4] 张一平, 龙海如. 纬编针织物双向拉伸性能测试与分析[J]. 纺织学报, 2011,32(11):37-41.
ZHANG Yiping, LONG Hairu. Testing and analysis of bidirectional tensile properties of weft knitted fabrics[J]. Journal of Textile Research, 2011,32(11):37-41.
[5] PEIRCE F T. Geometrical principles applicable to the design of functional fabrics[J]. General Information, 1947,17(3):123-147.
[6] MUNDEN D L. The geometry and dimensional properties of plain-knit fabrics[J]. Journal of The Textile Institute, 1959,50(7):448-471.
[7] MOZAFARY V, PAYVANDY P. A novel method based on loop shape for simulating knitted fabric using mass spring model[J]. Fibers & Polymers, 2017,18(3):533-541.
[8] DUHOVIC M, BHATTACHARYYA D. Simulating the deformation mechanisms of knitted fabric composites[J]. Composites Part A: Applied Science & Manufacturing, 2006,37(11):1897-1915.
[9] DUSSERRE G, BALEA L, BERNHART G. Elastic properties prediction of a knitted composite with inlaid yarns subjected to stretching: a coupled semi-analytical model[J]. Composites Part A: Applied Science and Manufacturing, 2014,64(64):185-193.
doi: 10.1016/j.compositesa.2014.05.007
[10] ARAÚJO M D, FANGUEIRO R, HONG H. Modelling and simulation of the mechanical behavior of weft-knitted fabrics for technical applications: part II: 3D model based on the elastica theory[J]. Autex Research Journal, 2003,3(4):166-172.
[11] LIU D, CHRISTE D, SHAKIBAJAHROMI B, et al. On the role of material architecture in the mechanical behavior of knitted textiles[J]. International Journal of Solids & Structures, 2017,109:101-111.
[12] CHOI K F, LO T Y. The shape and dimensions of plain knitted fabric: a fabric mechanical model[J]. Textile Research Journal, 2006,76(10):777-786.
doi: 10.1177/0040517507069030
[13] LUO Y, VERPOEST I. Biaxial tension and ultimate deformation of knitted fabric reinforcements[J]. Composites Part A: Applied Science & Manufacturing, 2002,33(2):197-203.
[14] 王戎戎. 针织物的变形与服用性能的研究[D]. 上海:东华大学, 2001:1-36.
WANG Rongrong. Study on the deformation and performance of knitted fabric[D]. Shanghai: Donghua University, 2001:1-36.
[1] 尉腾祥, 李敏, 彭虹云, 付少海. 纬平针棉针织物平幅丝光条件与其线圈结构的关系[J]. 纺织学报, 2020, 41(04): 98-105.
[2] 李冻 陈太球 蒋春燕 傅佳佳 王鸿博. 原料及结构参数对防电弧织物性能的影响[J]. 纺织学报, 2018, 39(08): 41-45.
[3] 陈丽丽 楼利琴 傅雅琴. 木棉纤维/棉混纺织物结构参数对其保暖透气性影响[J]. 纺织学报, 2018, 39(06): 47-51.
[4] 杨瑞华 薛元 郭明瑞 王鸿博 周建 高卫东. 数码转杯纺成纱原理及其纱线特点[J]. 纺织学报, 2017, 38(11): 32-35.
[5] 杨书会 王瑞. 纯棉织物折皱回复角与其组织结构参数的关系[J]. 纺织学报, 2017, 38(04): 46-49.
[6] 张旭靖 王立川 陈雁. 针织内衣织物接触冷暖感的形成机理与影响因素[J]. 纺织学报, 2017, 38(01): 57-60.
[7] 黄三娇 高卫东 王鸿博. 精纺毛织物结构参数与折皱回复性的关系[J]. 纺织学报, 2016, 37(11): 37-41.
[8] 迟瑞芹 金菡 亓延. 裤裙结构的取值参数及规律性[J]. 纺织学报, 2015, 36(04): 120-123.
[9] 吴佳佳 唐虹 何姗姗. 织物含尘量对其热湿传递性能的影响[J]. 纺织学报, 2015, 36(03): 32-36.
[10] 张新杰 丛洪莲. 结构参数对割圈绒织物热湿舒适性的影响[J]. 纺织学报, 2014, 35(1): 46-0.
[11] 王秋美;宋鹏飞;徐雪梅;邹志伟. 玄武岩纤维针织物的尺寸特性[J]. 纺织学报, 2011, 32(2): 40-43.
[12] 庹武;陈谦. 基于改进BP神经网络的的西服肩袖造型研究[J]. 纺织学报, 2010, 31(8): 113-116.
[13] 钱有清;赵娟;左保齐. 桑蚕丝平纹织物的纰裂性能[J]. 纺织学报, 2010, 31(5): 38-43.
[14] 金关秀;胡金莲;吕晶;谭冬宜. 结构参数对温敏形状记忆机织物记忆性能的影响[J]. 纺织学报, 2010, 31(3): 40-44.
[15] 吴微微;张扬;朱洪晓. 毛精纺面料成形性与纬纱结构参数的关系[J]. 纺织学报, 2010, 31(11): 49-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!