纺织学报 ›› 2019, Vol. 40 ›› Issue (11): 50-56.doi: 10.13475/j.fzxb.20181104307

• 纺织工程 • 上一篇    下一篇

基于傅里叶频谱特征的织物平整度客观评级

石康君, 王静安, 高卫东()   

  1. 生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
  • 收稿日期:2018-11-19 修回日期:2019-03-28 出版日期:2019-11-15 发布日期:2019-11-26
  • 通讯作者: 高卫东
  • 作者简介:石康君(1993—),男,硕士生。主要研究方向为基于图像处理的纺织智能检测、模式识别。
  • 基金资助:
    国家重点研发计划资助项目(2017YFB0309200);江苏省研究生科研与实践创新计划项目(KYCX19_1878)

Objective smoothness evaluation of fabric based on Fourier spectral features

SHI Kangjun, WANG Jing'an, GAO Weidong()   

  1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2018-11-19 Revised:2019-03-28 Online:2019-11-15 Published:2019-11-26
  • Contact: GAO Weidong

摘要:

为解决织物平整度人工评级主观性强,现有客观评级准确率低的问题,提出一种基于傅里叶变换、频谱特征提取、支持向量机的织物平整度评级方法。首先采集标准模板及织物样本图像,对所得图像预处理并进行傅里叶变换;在频域内构建低通滤波器,通过频域滤波以及傅里叶逆变换确定褶皱信息在频谱图中所处频率范围,称之为褶皱贡献区间;将褶皱贡献区间划分为若干特征子区间,统计每一区间内频谱幅值之和,并以此作为特征值构造特征向量;以所有训练样本的特征向量构造特征向量集,并以所得特征向量集训练支持向量机,对织物平整度进行客观评级。所采用织物样本总数为132,取其中24张及标准模板图像为训练集,其余作为测试集。结果表明,本文使用算法在织物平整度评级方面具有很好的效果,评级准确率可达96.30%。

关键词: 平整度, 客观评级, 织物褶皱, 傅里叶变换, 支持向量机

Abstract:

In order to solve the problems that the manual evaluation of fabric smoothness is subjective and the existing objective evaluation has low accuracy, a fabric smoothness evaluation method based on Fourier transform, spectral feature extraction and support vector machine was proposed. Firstly, the images of the standard replicas and fabric samples were acquired; the obtained images were preprocessed and transformed to the Fourier frequency domain; and a set of low-pass filters were constructed in the frequency domain, and the frequency interval of the wrinkle information in the spectrogram was determined by frequency domain filtering and inverse Fourier transformation, which is called the wrinkle contribution interval. The wrinkle contribution interval was divided into several feature subintervals, and the spectral amplitude in each interval was integrated, which is constructed into the feature vector. The feature vector set was constructed by the feature vectors of all training samples, and utilized to train the support vector machine, which can objectively evaluate the fabric smoothness. The total number of the adopted fabric samples is 132, among which 24 and standard template images are taken as the training set, and the rest are taken as the test set. The results show that the algorithm performs well on fabric smoothness evaluation, and the evaluation accuracy rate is up to 96.30%.

Key words: smoothness, objective evaluation, fabric wrinkle, Fourier transform, support vector machine

中图分类号: 

  • TS941.2

图1

图像采集系统"

图2

AATCC模板图像"

图3

均衡化处理前后图像对比"

图4

AATCC模板的傅里叶变换图像"

图5

AATCC模板频谱幅值之和"

图6

各滤波器及其逆变换图像"

图7

各特征子区间频谱幅值之和"

图8

各等级织物幅值分布示意图"

图9

不同分辨率织物频谱图比较"

表1

不同分割步长的分类准确率"

分割步长 特征子区间数 分类准确率/% 训练平均时间/s
5 36 85.19 1.774 1
7 15 88.89 1.628 6
9 10 88.89 1.606 7
11 6 96.30 1.589 8
13 6 92.60 1.580 6
15 3 94.44 1.579 2

表2

不同预处理条件的分类准确率"

预处理方式 分类准确率/% 支持向量机参数
[0, 1]归一化 93.52 ‘-t 1 -c 1 -g 1/6’
[-1, 1]归一化 39.81 ‘-t 1 -c 1 -g 1/6’
原始数据 81.48 ‘-t 1 -c 1 -g 1/6’

表3

不同参数选择的分类准确率"

组号 惩罚系数c 核函数宽度g 分类准确率/%
1 1.00 0.170 0 93.52
2 2.78 0.002 6 38.89
3 0.04 0.620 0 25.93
4 0.23 0.091 0 96.30

图10

不同光源角度的织物图像"

表4

不同光源角度的分类准确率"

光源角度/(°) 0 45 90 135 180 225 270 315
准确率/% 96.30 94.44 85.19 88.89 92.59 88.89 72.22 70.37

表5

不同光照强度与光源入射高度角的分类准确率"

光照强度/lx 光源入射高度角/(°)
50 100 150 200 250 0 27 45 56 63 68
88.89 88.89 94.44 96.30 92.60 24.07 96.30 16.67 9.26 9.26 9.26
[1] YOUNG J N, BEHNAM F D. Assessing wrinkle using image analysis and replicate standard[J]. Textile Research Journal, 1995,65(3):149-157.
doi: 10.1177/004051759506500303
[2] XU B, REED J A. Instrumental evaluation of fabric wrinkle recovery[J]. Journal of The Textile Institute, 1995,86(1):129-135.
doi: 10.1080/00405009508631316
[3] AMIRBAYAT J, ALAGHA M J. Objective assessment of wrinkle recovery by means of laser triangulation[J]. Journal of The Textile Institute, 1996,87(1):349-355.
doi: 10.1080/00405009608659087
[4] KANG T J, CHO D H, KIM S M. A new method for the objective evaluation of fabric surface waviness[J]. AATCC Review, 2002,2(2):38-41.
[5] CHOI C J, KIM H J, JIN Y C, et al. Objective wrinkle evaluation system of fabrics based on 2D FFT[J]. Fibers and Polymers, 2009,10(2):260-265.
doi: 10.1007/s12221-009-0260-0
[6] KANG T J, KIM S C, SUL I H, et al. Fabric Surface Roughness evaluation using wavelet-fractal method[J]. Textile Research Journal, 2005,75(11):751-760.
doi: 10.1177/0040517505058855
[7] 高士忠. 基于灰度共生矩阵的织物纹理分析[J]. 计算机工程与设计, 2008,29(16):4385-4387.
GAO Shizhong. Analysis of fabric texture based on GLCM[J]. Computer Engineering and Design, 2008,29(16):4385-4387.
[8] 陈健敏, 吴兆平, 严灏景. 分形理论在织物褶皱评定中的应用[J]. 中国纺织大学学报, 1999,25(2):34-36.
CHEN Jianmin, WU Zhaoping, YAN Haojing. Application of fractal theory in fabric wrinkle evalua-tion[J]. Journal of China Textile University, 1999,25(2):34-36.
[9] 刘成霞, 甘敏. 织物平整度的特征提取方法对比研究[J]. 丝绸, 2017(3):45-49.
LIU Chengxia, GAN Min. Comparative study of feature extraction for fabric smoothness[J]. Journal of Silk, 2017(3):45-49.
[10] 张宁, 潘如如, 高卫东. 采用图像处理的织物缝纫平整度自动评估[J]. 纺织学报, 2017,38(4):148-149.
ZHANG Ning, PAN Ruru, GAO Weidong. Automatic seam-puckering evaluation using image processing[J]. Journal of Textile Research, 2017,38(4):148-149.
[11] 杨晓波. 基于模糊C均值聚类的织物平整度等级评定[J]. 苏州大学学报(工科版), 2005,25(3):18-21.
YANG Xiaobo. Smoothness evaluation of fabric based of FCMA[J]. Journal of Soochow University (Engineering Science Edition), 2005,25(3):18-21.
[12] RAFAEL C G. 数字图像处理的MATLAB实现[M]. 北京: 清华大学出版社, 2013: 58-59.
RAFAEL C G. MATLAB Implementation of Digital Image Processing [M]. Beijing: Tsinghua University Press, 2013: 58-59.
[13] 郭治成. 基于信号处理描述纹理特征方法[J]. 中国新技术新产品, 2012(21):34.
GUO Zhicheng. A method of texture feature description based on signal processing[J]. China New Technologies and Products, 2012(12):34.
[1] 夏海浜, 黄鸿云, 丁佐华. 基于迁移学习与支持向量机的服装舒适度评估[J]. 纺织学报, 2020, 41(06): 125-131.
[2] 龚雪, 袁理, 刘军平, 杨亚莉, 刘沐黎, 柯政涛, 鄢煜尘. 混合色彩空间与多核学习的色纺织物组织点识别[J]. 纺织学报, 2020, 41(05): 58-65.
[3] 徐平华, 冒海琳, 沈红影, 丁雪梅. 洗后织物外观视觉特征编码与折皱评级[J]. 纺织学报, 2020, 41(05): 66-71.
[4] 肖平, 钱伯丹, 鲁虹, 张向辉, 张媛. 服装缝纫平整度的研究进展[J]. 纺织学报, 2019, 40(11): 182-188.
[5] 魏子涵 李文霞 杜宇君 马静雯 郑佳辉. 织物傅里叶变换衰减全反射红外光谱库的建立及应用[J]. 纺织学报, 2019, 40(08): 64-68.
[6] 陶开鑫 俞成丙 侯颀骜 吴聪杰 刘引烽. 基于最小二乘支持向量机的棉针织物活性染料湿蒸染色预测模型[J]. 纺织学报, 2019, 40(07): 169-173.
[7] 李佳平 沈国康 欧耀明 孟想 辛斌杰. 应用连续投影算法及最小二乘支持向量机的单组分纺织品识别[J]. 纺织学报, 2018, 39(08): 46-51.
[8] 金关秀 张毅 楼永平 祝成炎. 应用粗糙集和支持向量机的熔喷非织造布过滤性能预测[J]. 纺织学报, 2018, 39(06): 142-148.
[9] 陈丽丽. 精纺毛织物缝纫平整度客观评价方法[J]. 纺织学报, 2018, 39(03): 120-125.
[10] 张陆佳 林兰天 陈春敏 申炎仃 高琮. 基于主成分分析的纤维拉伸断裂声发射信号识别[J]. 纺织学报, 2018, 39(01): 19-24.
[11] 张建新 张银露 胡旭东. 光谱优化处理结合多层次支持向量机的混合染液浓度检测方法[J]. 纺织学报, 2017, 38(07): 90-94.
[12] 李东 万贤福 汪军. 采用傅里叶描述子和支持向量机的服装款式识别方法[J]. 纺织学报, 2017, 38(05): 122-127.
[13] 张宁 潘如如 高卫东. 采用图像处理的织物缝纫平整度自动评估[J]. 纺织学报, 2017, 38(04): 145-150.
[14] 陈孝之 谢莉青. 织物颜色配准到标准色卡的计算机识别与仿真[J]. 纺织学报, 2016, 37(05): 150-154.
[15] 黎聪 闫学娜 曾祥忠 梁猛 张莹. 应用一维傅里叶变换的剖幅区自动识别与定位[J]. 纺织学报, 2016, 37(01): 147-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!