纺织学报 ›› 2019, Vol. 40 ›› Issue (12): 68-73.doi: 10.13475/j.fzxb.20190303606

• 染整与化学品 • 上一篇    下一篇

羊毛/铁配合物非均相芬顿反应光催化剂的制备及其应用性能

崔桂新1,2, 董永春1,3(), 王鹏1   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.中纺院(浙江)技术研究院有限公司, 浙江 绍兴 312071
    3.天津工业大学 先进纺织复合材料重点实验室, 天津 300387
  • 收稿日期:2019-03-13 修回日期:2019-06-24 出版日期:2019-12-15 发布日期:2019-12-18
  • 通讯作者: 董永春
  • 作者简介:崔桂新(1978—),女,教授级高级工程师,博士生。主要研究方向为纺织化学与环保技术。
  • 基金资助:
    绍兴市公益性项目(2014B70006)

Preparation and application properties of wool-Fe complex-based heterogeneous Fenton photocatalysts

CUI Guixin1,2, DONG Yongchun1,3(), WANG Peng1   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Zhejiang Technology Research Institute of CTA Co., Ltd., Shaoxing, Zhejiang 312071, China
    3. Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
  • Received:2019-03-13 Revised:2019-06-24 Online:2019-12-15 Published:2019-12-18
  • Contact: DONG Yongchun

摘要:

为提升废旧羊毛的回收再利用价值,将具有不同直径和鳞片结构的3种羊毛分别与水溶液中Fe3+进行配位反应,得到3种羊毛/铁配合物,然后将其作为非均相芬顿反应光催化剂应用于活性红195的氧化降解反应中,研究了反应条件以及羊毛直径和鳞片层等对配合物的铁离子配合量和光催化性能的影响。结果表明:Fe3+浓度和配位反应温度的升高均能促进Fe3+和羊毛之间配位反应的进行,较薄鳞片层的羊毛更易与Fe3+反应,制备更高铁离子配合量的羊毛/铁配合物;可使用Lagergren准二级动力学模型方程对羊毛与Fe3+之间的配位反应进行描述,但较薄鳞片层羊毛的反应速度更慢;3种羊毛/铁配合物都可显著催化染料发生氧化降解反应,提高铁离子配合量和辐射光强度,均能增加其光催化性能,较细羊毛制备的配合物具有更强的催化作用和pH值适应性。

关键词: 废弃羊毛, 羊毛/铁配合物, 鳞片结构, 光催化剂, 染料降解

Abstract:

To improve the recycling value of waste wool, three wool fibers with different diameters and scales structures were coordinated with Fe3+ ions for producing three wool-Fe complexes as heterogeneous Fenton photocatalysts for the oxidative degradation of azo dyes. The influence of reaction conditions and the diameter and scale thickness of wool fiber on Fe content and photocatalytic activity of the complexes was investigated. The results indicate that high Fe content and elevated temperature can enhance the coordination of the Fe3+ and wool, and the wool fiber with low scale thickness is coordinated easily with Fe3+ to form wool-Fe complex containing higher Fe content. The coordination of wool fiber with Fe3+ ions can be described by Lagergren pseudo-second-order kinetic model. The wool fiber with low scale thickness shows a slower coordination rate than the other two wool fiber. Three resulting wool-Fe complexes have a significant photocatalytic function on dye degradation. High Fe content and increased irradiation can enhance their photocatalytic activity. The complexes prepared from thin wool fiber exhibites stronger photocatalytic performance and low pH sensitivity.

Key words: waste wool, wool-Fe complex, scale structure, photocatalyst, dye degradation

中图分类号: 

  • TS195.9

表1

3种羊毛的平均直径和鳞片厚度"

羊毛编号 平均直径 平均鳞片厚度
wool-1 25.66 0.931 8
wool-2 36.47 0.956 0
wool-3 36.85 0.659 3

图1

3种羊毛与Fe3+配位反应过程及CFe,0对QFe值的影响"

图2

反应温度对配合物QFe值的影响"

表2

不同羊毛与Fe3+配位反应的准二级动力学参数"

羊毛
名称
CFe,0 /
(mol·L-1)
Qe /
(mmol·g-1)
k/
(g·(mmol·min)-1)
R2
wool-1 0.02 0.164 6 1.078 7 0.964 8
0.05 0.339 9 0.387 2 0.980 2
0.10 0.605 6 0.240 3 0.970 1
0.20 0.947 9 0.063 7 0.947 2
wool-2 0.02 0.176 5 0.368 7 0.984 4
0.05 0.311 0 0.366 3 0.984 5
0.10 0.551 8 0.163 6 0.984 2
0.20 0.811 5 0.085 3 0.931 7
wool-3 0.02 0.948 5 0.006 6 0.983 6
0.05 1.110 8 0.006 5 0.987 9
0.10 2.157 1 0.003 4 0.987 7
0.20 2.948 1 0.003 2 0.971 3

图3

不同wool-Fe存在时染料的脱色率变化"

图4

QFe值与D40值之间的关系"

图5

体系pH值对D40值的影响"

图6

不同辐射光条件下的D40值变化 注:A为可见光(400~1 000 nm)光强度为9.165 mW/cm2,紫外光(365 nm)光强度为0.465 mW/cm2;B为可见光(400~1 000 nm)光强度为2.785 mW/cm2,紫外光(365 nm)光强度为0.605 mW/cm2。"

[1] ZHAO W, YANG R J, ZHANG Y Q, et al. Sustainable and practical utilization of feather keratin by an innovative physicochemical pretreatment: high density steam flash-explosion[J]. Green Chemistry, 2012,14(12):3352-3360.
[2] 罗艳辉, 薄宗耀, 黄玉华. 废旧纺织品回收再利用的现状及其发展趋势[J]. 纺织科技进展, 2012(3):9-13.
LUO Yanhui, PU Zongyao, HUANG Yuhua. Textile waste recycling status and its development trend[J]. Progress in Textile Science & Technology, 2012(3):9-13.
[3] 李长伟, 吕丽华. 废弃羊毛吸声复合材料的制备及其性能[J]. 纺织学报, 2018,39(10):74-80.
LI Changwei, LÜ Lihua. Preparation and properties of sound absorption composites based on waste wool[J]. Journal of Textile Research, 2018,39(10):74-80.
[4] PATNAIK A, MVUBU M, MUNIYASAMY S, et al. Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies[J]. Energy and Buildings, 2015,92:161-169.
[5] SALAMA M, HASSABO A G, El-SAYED A A, et al. Reinforcement of polypropylene composites based on recycled wool or cotton powders[J]. Journal of Natural Fibers, 2017,14(6):823-836.
[6] 徐恒星, 史吉华, 周奥佳, 等. 羊毛角蛋白的提取及其成膜性[J]. 纺织学报, 2012,33(6):41-47.
XU Hengxing, SHI Jihua, ZHOU Aojia, et al. Keratin extraction from wool and its film forming property[J]. Journal of Textile Research, 2012,33(6):41-47.
[7] XIE H B, LI S G, ZHANG S B. Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers[J]. Green Chemistry, 2005,7(8):606-608.
doi: 10.1039/b502547h
[8] DU Z, JI B L, YAN K. Recycling keratin polypeptides for anti-felting treatment of wool based on L-cysteinepretreatment[J]. Journal of Cleaner Production, 2018,183:810-817.
doi: 10.1016/j.jclepro.2018.02.196
[9] DONG Y, HAN Z, LIU C, et al. Preparation and photocatalytic performance of Fe(III)-amidoximated PAN fiber complex for oxidative degradation of azo dye under visible light irradiation[J]. Science of the Total Environment, 2010,408:2245-2253.
doi: 10.1016/j.scitotenv.2010.01.020
[10] 詹怀宇. 纤维化学与物理[M]. 北京: 科学出版社, 2005: 259-360.
ZHAN Huaiyu. Fibre Chemistry and Physics[M]. Beijing: Sciences Press, 2005: 259-360.
[11] 宋啸平, 黄美玉, 江英彦. 羊毛-过渡金属络合物的合成及其选择性催化氢化性能的研究[J]. 功能高分子学报, 1994(2):136-142.
SONG Xiaoping, HUANG Meiyu, JIANG Yingyan. Synjournal and catalytic behavior of wool-supported metal complexes for selective hydrogenation[J]. Journal of Functional Polymers, 1994(2):136-142.
[12] CUI G, DONG Y, LI Y, et al. Novel heterogeneous photocatalysts prepared with waste wool and Fe3+ or Cu2+ ions for degradation of CI Reactive Red 195: a comparative study[J]. Coloration Technology, 2017,133(3).DOI: 10.111/cote.12268.
[13] CUI G, DONG Y, LI B, et al. A novel heterogeneous Fenton photocatalyst prepared using waste wool fiber combined with Fe3+ ions for dye degradation[J]. Fibers and Polymers, 2017,18(4):713-719.
doi: 10.1007/s12221-017-6002-9
[14] 闫克路. 染整工艺与原理: 下册[M]. 北京: 中国纺织出版社, 2009: 16-45.
YAN Kelu. Dyeing and Finishing Process and Prin-ciple(Ⅱ)[M]. Beijing: China Textile & Apparel Press, 2009: 16-45.
[15] 董永春, 杜芳, 韩振邦. 改性PAN纤维与铁离子的配位结构及其对染料降解的催化作用[J]. 物理化学学报, 2008,24(11):2114-2121.
DONG Yongchun, DU Fang, HAN Zhenbang. Coordination structure between modified PAN fiber and Fe(III) ion and its catalytic function on degradation of azo dyes[J]. Acta Physico-Chimica Sinica, 2008,24(11):2114-2121.
doi: 10.3866/PKU.WHXB20081130
[1] 刘禹豪, 孙辉, 王捷琪, 于斌. TiO2 / MIL-88B( Fe) / 聚丙烯复合熔喷非织造材料的制备及其性能[J]. 纺织学报, 2020, 41(02): 95-102.
[2] 施小平, 李瑶, 潘家豪, 王挺, 吴礼光. 用水热还原法制备可见光响应TiO2光催化剂[J]. 纺织学报, 2019, 40(10): 105-112.
[3] 吴海培 高晓红 方婧 刘其霞 何平. 二氧化钛/还原氧化石墨烯复合材料的制备及其光催化降解脱色性能[J]. 纺织学报, 2018, 39(12): 78-83.
[4] 李长伟 吕丽华. 废弃羊毛吸声复合材料的制备及其性能[J]. 纺织学报, 2018, 39(10): 74-80.
[5] 李冰蕊 潘家豪 王挺 吴礼光 许智勇. 用吸附相反应技术制备弱光响应的铈掺杂TiO2复合光催化剂[J]. 纺织学报, 2018, 39(05): 67-73.
[6] 吉强 王晓 戚俊然 崔永珠 吕丽华. 光接枝丙烯酸棉纤维素基TiO2/C光催化剂的制备与光催化性[J]. 纺织学报, 2017, 38(10): 75-80.
[7] 赵雪婷 董永春 程博闻 康卫民. 铁改性聚丙烯腈纳微米纤维催化剂在偶氮染料降解中的应用[J]. 纺织学报, 2013, 34(10): 76-0.
[8] 杨金库;董永春;郭瑾;刘春燕. 低温制备纳米TiO2溶胶整理棉织物对染料的降解[J]. 纺织学报, 2010, 31(7): 69-73.
[9] 吕春燕;吕彤;苏秋红;侯立叶;吕小卓. 负载型磺酸铁酞菁对染料废水的光催化降解[J]. 纺织学报, 2009, 30(05): 100-103.
[10] 徐英莲;黄龙全;傅雅琴;郑东伟. 棉织物基光催化功能材料制备工艺[J]. 纺织学报, 2008, 29(7): 69-72.
[11] 黄龙全;徐英莲;傅雅琴. 纳米羟基磷灰石对光催化棉织物的保护性能[J]. 纺织学报, 2008, 29(2): 60-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!