纺织学报 ›› 2020, Vol. 41 ›› Issue (01): 139-144.doi: 10.13475/j.fzxb.20181105406
摘要:
为得到相对精确的热防护服非稳态隔热性能预测数值,基于传热系统的非稳态传热模型,在防护服材料外表面分别为恒温边界条件和Howard模型对流边界条件下,利用有限差分法分别计算了2种边界条件下模拟皮肤处温度的时程曲线,所得结果均与实验测量值差别较大。在细致分析传热过程的基础上,综合运用傅里叶定律、牛顿冷却定律、以及Howard模型对流边界条件,在线化假设下提出了一种自然对流换热系数计算方法,代入非稳态模型后利用有限差分法进行了求解,随着时间步长的加密,计算结果迅速向实验测量值收敛,当时间步长为0.001 s时,计算结果与测量结果误差小于0.1 ℃。
中图分类号:
[1] | 田苗, 李俊. 数值模拟在热防护服装性能测评中的应用[J]. 纺织学报, 2015,36(1):158-164. |
TIAN Miao, LI Jun. Application of numerical simulation on performance evaluation of thermal protective clothing[J]. Journal of Textile Research, 2015,36(1):158-164. | |
[2] | TORVI D A. Heat transfer in thin fibrous materials under high heat flux conditions[D]. Edmonton: University of Alberta, 1997:47-48. |
[3] | 卢琳珍, 徐定华, 徐映红. 应用三层热防护服热传递改进模型的皮肤烧伤度预测[J]. 纺织学报, 2018(1):111-118. |
LU Linzhen, XU Dinghua, XU Yinghong. Prediction of skin injury degree based on modified model of heat transfer in three-layered thermal protective clothing[J]. Journal of Textile Research, 2018,39(1):111-118. | |
[4] | CHITRPHIROMSRI P, KUZNETSOV A V. Modeling heat and moisture transport in firefighter protective clothing during flash fire exposure[J]. Heat & Mass Transfer, 2005,41(3):206-215. |
[5] |
TORVI D A, DALE J D. Heat transfer in thin fibrous materials under high heat flux[J]. Fire Technology, 1999,35(3):210-231.
doi: 10.1023/A:1015484426361 |
[6] |
MELL W E, LAWSON J R. A heat transfer model for firefighters' protective clothing[J]. Fire Technology, 2000,36(1):39-68.
doi: 10.1023/A:1015429820426 |
[7] |
KIM M C, YOON D Y, CHOI C K. Buoyancy-driven convection in a horizontal fluid layer under uniform volumetric heat sources[J]. Korean Journal of Chemical Engineering, 1996,13(2):165-171.
doi: 10.1007/BF02705904 |
[8] | SU Yun, LI Rui, SONG Guowen, et al. Modeling steam heat transfer in thermal protective clothing under hot steam exposure[J]. International Journal of Heat & Mass Transfer, 2018,120:818-829. |
[9] | 陈扬, 杨允出, 刘莹. 非稳态条件下织物热传递模拟分析[J]. 毛纺科技, 2018,46(8):6-10. |
CHEN Yang, YANG Yunchu, LIU Ying. Simulation analysis of heat transfer of fabrics in unsteady-state conditions[J]. Wool Textile Journal, 2018,46(8):6-10. | |
[10] | PIOTR Furmański, PIOTR Łapka. Evaluation of a human skin surface temperature for the protective clothing-skin system based on the protective clothing-skin imitating material results[J]. International Journal of Heat & Mass Transfer, 2017,114:1331-1340. |
[11] | 张昭华, 王云仪, 李俊. 衣下空气层厚度对着装人体热传递的影响[J]. 纺织学报, 2010,31(12):103-107. |
ZHANG Zhaohua, WANG Yunyi, LI Jun. Effect of thickness of air layer under clothing on heat transmission of wearer[J]. Journal of Textile Research, 2010,31(12):103-107. | |
[12] | MIN K, SON Y, KIM C, et al. Heat and moisture transfer from skin to environment through fabrics: a mathematical model[J]. International Journal of Heat & Mass Transfer, 2007,50(25):5292-5304. |
[13] | 中国工业与应用数学学会. 高温作业专用服装设计[EB/OL]. [2018-9-13]. [EB/OL]. [2018-9-13]. . |
[1] | 史倩倩, 王姜, 张玉泽, 林惠婷, 汪军. 转杯纺纱器气流场形成机制的数值分析[J]. 纺织学报, 2021, 42(02): 180-184. |
[2] | 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121. |
[3] | 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196. |
[4] | 初曦, 邱华. 不同压强条件下环锭旋流喷嘴内部流场模拟[J]. 纺织学报, 2020, 41(09): 33-38. |
[5] | 何佳臻, 薛萧昱, 王敏, 李俊. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(06): 112-117. |
[6] | 李斯湖, 沈敏, 白聪, 陈亮. 喷气织机辅助喷嘴结构参数对流场特性的影响[J]. 纺织学报, 2019, 40(11): 161-167. |
[7] | 陈思, 卢业虎. 空气层厚度对热防护面料蒸汽防护性能的影响[J]. 纺织学报, 2019, 40(10): 141-146. |
[8] | 张泓月, 李小辉. 热防护服用织物蜂窝夹芯结构的辐射热性能测评[J]. 纺织学报, 2019, 40(10): 147-151. |
[9] | 陈旭, 吴炳洋, 范滢, 杨木生. 蓄热调温织物低温防护过程的数值模拟[J]. 纺织学报, 2019, 40(07): 163-168. |
[10] | 郑振荣, 智伟, 韩晨晨, 赵晓明, 裴晓园. 碳纤维织物在热流冲击下的热传递数值模拟[J]. 纺织学报, 2019, 40(06): 38-43. |
[11] | 曹海建, 陈红霞, 黄晓梅. 玻璃纤维/环氧树脂基夹芯材料侧压性能数值模拟[J]. 纺织学报, 2019, 40(05): 59-63. |
[12] | 郭臻, 李新荣, 卜兆宁, 袁龙超. 喷气涡流纺中纤维运动的三维数值模拟[J]. 纺织学报, 2019, 40(05): 131-135. |
[13] | 广少博, 金玉珍, 祝晓晨. 喷气织机延伸喷嘴内气流场特性分析[J]. 纺织学报, 2019, 40(04): 135-139. |
[14] | 刘倩楠, 张涵, 刘新金, 苏旭中. 基于ABAQUS的三原组织机织物拉伸力学性能模拟[J]. 纺织学报, 2019, 40(04): 44-50. |
[15] | 尚珊珊, 郁崇文, 杨建平, 钱希茜. 喷气涡流纺纺纱过程中的气流场数值模拟[J]. 纺织学报, 2019, 40(03): 160-167. |
|