纺织学报 ›› 2020, Vol. 41 ›› Issue (01): 174-183.doi: 10.13475/j.fzxb.20190801610
董奎勇1,2, 杨婷婷1,3, 王学利3, 何勇3(), 俞建勇3
DONG Kuiyong1,2, YANG Tingting1,3, WANG Xueli3, HE Yong3(), YU Jianyong3
摘要:
为促进我国化纤行业转型升级与持续发展,对以生物基聚对苯二甲酸乙二醇酯纤维、聚对苯二甲酸-1,3-丙二醇酯纤维、聚乳酸纤维、聚呋喃二甲酸乙二醇酯纤维、聚呋喃二甲酸丙二醇酯纤维,以及生物基聚酰胺56纤维为代表的生物基聚酯、聚酰胺纤维的国内外生产现状,市场需求、技术发展及趋势进行了综述,对全球生物基纤维专利的分布、各主要开发机构的专利战略及技术情况进行了梳理及剖析。在此基础上结合国内高分子材料产业实际,对我国生物基聚酯、聚酰胺纤维的发展建言应重点攻关生物基乙二醇、对苯二甲酸、己二胺等战略性生物基单体制备的核心技术,同时就重点任务和发展路径提出了建议。
中图分类号:
[1] | 王启明. 生物基聚酯PTT与PDT的发展概况[J]. 高分子通报, 2013 (10):129-135. |
WANG Qiming. From PTT to PDT, development of biological based polyester[J]. Polymer Bulletin, 2013(10):129-135. | |
[2] | 陈力群. 生物基PDT聚酯产品性能研究[J]. 国际纺织导报, 2014, 42(3):36,38-40. |
CHEN Liqun. Study on the performance of polydihydricals alcohol terephthalate (PDT) products[J]. Melliand China, 2014, 42(3):36,38-40. | |
[3] | 蒋晓东, 王建坤, 郭晶. 新型聚酯纤维PTT的研究进展[J]. 纺织科学与工程学报, 2018,35(4):167-170. |
JIANG Xiaodong, WANG Jiankun, GUO Jing. Research progress of new polyester fiber PTT[J]. Journal of Textile Science and Engineering, 2018,35(4):167-170. | |
[4] | 朱平, 董侠, 王笃金. 长碳链聚酰胺基热塑性弹性体研究进展[J]. 高分子通报, 2016 (9):171-181. |
ZHU Ping, DONG Xia, WANG Dujin. Research progress of long carbon chain polyamide based thermoplastic elastomers[J]. Polymer Bulletin, 2016(9):171-181. | |
[5] | KEDO Alex. 具有创新性和成本竞争力的纺织用生物基聚酰胺[J]. 国际纺织导报, 2016,44(5):12-14,28. |
KEDO Alex. Innovative, cost-competitive, bio-based polyamide for textiles[J]. Melliand China, 2016,44(5):12-14, 28. | |
[6] | 李蒙蒙, 胡柳, 侯爱芹, 等. 生物基纤维尼龙PA56染色性能及产品开发研究进展[J]. 染料与染色, 2016,53(5):25-30. |
LI Mengmeng, HU Liu, HOU Aiqin, et al. Development of dyeing property of bio-based nylon PA56[J]. Dyestuffs and Coloration, 2016,53(5):25-30. | |
[7] | 徐卫海, 娄雪芹, 王学利, 等. 生物基戊二胺己二酸盐改性聚酯的合成及结构分析[J]. 东华大学学报(自然科学版), 2016,42(5):663-668. |
XU Weihai, LOU Xueqin, WANG Xueli, et al. Synjournal and structure analysis of polyester modified with bio-based diaminopentane hexanedioic salt[J]. Journal of Donghua University (Natural Science Edition), 2016,42(5):663-668. | |
[8] | 王学利, 张晨, 俞建勇, 等. 生物基聚己二酸戊二胺聚合物结构及高速纺长丝性能[J]. 合成纤维, 2015,44(9):1-5. |
WANG Xueli, ZHANG Chen, YU Jianyong, et al. The structure of poly(adipic acid-1,5-diaminopentane) and its high speed spun filament properties[J]. Synthetic Fiber in China, 2015,44(9):1-5. | |
[9] | Sustainability: PlantBottleTM packaging[EB/OL]. [2019-06-20]. https://www.coca-colaafrica.com/stories/sustainability-packaging-plantbottle#. |
[10] | Meet our partners: plant pet technology collabora-tive[EB/OL]. [2019-06-20]. https://www.coca-colacompany.com/stories/meet-our-partners-plant-pet-technology-collaborative. |
[11] | Bio-TCatTM for renewable chemicals & fuels[EB/OL]. [2019-06-20]. http://anellotech.com/bio-tcat%E2%84%A2-renewable-chemicals-fuels. |
[12] | Products: chemicals overview[EB/OL]. [2019-06-20]. https://www.virent.com/products/chemicals/. |
[13] | Products to make the world more natural[EB/OL]. [2019-06-20]. https://gevo.com/ingredient-products/. |
[14] | Nova-Institut. Bio-based building blocks and polymers: global capacities and trends 2017-2022[R/OL]. http://bio-based:eu/downloads/bio-based-building-blocks-and-polymers-global-capacities-and-trends-2016-2022/. |
[15] | MAZANEC T J, WHITING J P, PESA F, et al. Regeneration of catalytic fast pyrolysis catalyst: WO2014165223A2[P]. 2019-01-08. |
[16] | SHI J, CHENG Y T, SONG R, et al. Catalysts and processes for producing p-xylene from biomass: WO2015089442A1[P]. 2015-06-18. |
[17] | SORENSEN C M, SONG R, Processes for converting biomass to BTX with low sulfur, nitrogen and olefin content via a catalytic fast pyrolysis process: WO2016004206A1[P]. 2017-05-10. |
[18] | TANZIO M, SORENSEN C M, SCHNEIDKRAUT M E, et al. Improved processes for recovering valuable components from a catalytic fast pyrolysis process: WO2016004248A2[P]. 2016-01-07. |
[19] | SORENSEN C, Improved catalytic fast pyrolysis process: WO2016081148A1[P]. 2016-05-26. |
[20] | SORENSEN C, MAZANEC T. Method for production of biomass-derived chemical intermediates: WO2016168237A1[P]. 2016-10-20. |
[21] | SHI J, SORENSEN C, MAZANEC T, et al. Improved catalytic fast pyrolysis process with impurity removal: WO2017003790A1[P]. 2017-01-05. |
[22] | SORENSEN C. Chemicals and fuel blendstocks by a catalytic fast pyrolysis process: WO2017136176A1[P]. 2017-08-10. |
[23] | SORENSEN C. Chemicals and fuel blendstocks by a catalytic fast pyrolysis process: WO2017136177A1[P]. 2017-08-10. |
[24] | DIGNE R, RUIZ Martinez C, PAGOT A B, et al. Efficient recovery of valuable components from biomass catalytic pyrolysis effluent: WO2019022743A1[P]. 2019-01-31. |
[25] | BLOMMEL P, HELD A, GOODWIN R, et al. Process for converting biomass to aromatic hydrocarbons: WO2014190161A1[P]. 2014-11-27. |
[26] | BLANK B, CORTRIGHT R, BECK T, et al. Improved catalysts for hydrodeoxygenation of oxygenated hydrocarbons: WO2014028723A1[P]. 2014-02-10. |
[27] | QIAO M, WOODS E M, MYREN P, et al. Production of chemicals and fuels from biomass by decomposition to oxygenates: WO2012162403A1[P]. 2012-11-19. |
[28] | KANIA J, QIAO M, WOODS E M, et al. Apparatus and method for converting biomass to feedstock for biofueland biochemical manufacturing processes:WO2012151275A1 [P]. 2015-12-15. |
[29] | CORTRIGHT R D, VOLLENDORF N W, HORNEMANN C C, et al. Catalysts and methods for reforming oxygenated compounds: WO2007075476A2[P]. 2009-08-27. |
[30] | TAYLOR T J, TAYLOR J D, PETERS M W, et al. Variations on prins-like chemistry to produce 2,5-dime-thylhexadiene from isobutanol:US20120271082A1[P]. 2012-10-25. |
[31] | TANAKA Y, MORIMOTO K, OKUBO T, et al. Method for manufacturing biomass-derived polyester having excellent dyeability and biomass-derived polyester:WO2012173220A1[P]. 2012-12-20. |
[32] | PETERS M W, HENTON D E, TAYLOR J D, et al. Manufacture of xylene from C4 and C5 molecules obtained from fermentation of biomass: WO2012061372A1[P]. 2012-05-10. |
[33] | PETERS M W, TAYLOR J D, JENNI M, et al. Integrated process to selectively convert renewable isobutanol to p-xylene: WO2011044243A1[P]. 2011-04-14 |
[34] | PETERS M W, TAYLOR J D, JENNI M M, et al. Integrated methods of preparing renewable chemicals: WO2011085223A1[P]. 2011-07-14 |
[35] | Materials: SOLOTEX[EB/OL]. [2019-06-20]. https://www2.teijin-frontier.com/english/sozai/specifics/solotex.html. |
[1] | 魏艳红, 刘新金, 谢春萍, 苏旭中, 吉宜军. 几种差别化聚酯纤维的结构与性能[J]. 纺织学报, 2019, 40(11): 13-19. |
[2] | 王岩, 王连军, 陈建芳. 含胍抗菌聚酯纤维的制备及其性能[J]. 纺织学报, 2019, 40(04): 26-31. |
[3] | 万爱兰, 缪旭红, 马丕波, 陈晴, 陈方芳. 功能性纬编斜纹牛仔面料的设计及其性能[J]. 纺织学报, 2019, 40(04): 55-59. |
[4] | 张琳, 武海良, 沈艳琴, 毛宁涛. 碱处理对异形截面聚酯纱线芯吸效应及强力的影响[J]. 纺织学报, 2019, 40(01): 73-78. |
[5] | 巫莹柱 单颖法 黄伯熹 林广茂 梁家豪 张晓利. 聚对苯二甲酸丙二醇酯与聚对苯二甲酸丁二醇酯混纺纤维的智能识别[J]. 纺织学报, 2018, 39(09): 169-175. |
[6] | 韦树琛 丁欣 李文霞 王华平 张朔. 废旧聚酯纤维制品近红外定量分析模型的建立及验证[J]. 纺织学报, 2018, 39(07): 63-68. |
[7] | 梁必超 韩春艳 季轩 魏青 赵炯心 王建庆. 聚酯/聚酰胺共聚纤维的结构及其理化性能[J]. 纺织学报, 2016, 37(11): 1-7. |
[8] | 王维明 虞波 陈缘晴 王中正. 改性聚酯纤维用防活性染料沾色剂的制备及其适用性[J]. 纺织学报, 2015, 36(06): 72-76. |
[9] | 王锐 莫小慧 王晓东. 海藻酸盐纤维应用现状及发展趋势[J]. 纺织学报, 2014, 35(2): 145-0. |
[10] | 方孝芬 王朝生. 新型阻燃亲水聚酯纤维的制备及其性能[J]. 纺织学报, 2013, 34(2): 18-22. |
[11] | 王燕萍, 夏于旻, 甘海啸, 朱卫彪, 钦维民, 王依民. 芳香族共聚酯的固相聚合和熔融纺丝[J]. 纺织学报, 2012, 33(6): 111-115. |
[12] | 阮芳涛, 金欣, 韦毅俊, 王闻宇, 郭成越, 肖长发, 谢淳. 碱处理∕吡咯沉积制备聚酯导电纤维[J]. 纺织学报, 2012, 33(2): 1-5. |
[13] | 孙玉;郑帼;周岚. 改性共聚酯纤维的染色性能[J]. 纺织学报, 2011, 32(3): 77-81. |
[14] | 丁飞飞;汪澜;林俊雄. 低熔点皮芯复合纤维分散染料染色机制[J]. 纺织学报, 2011, 32(1): 67-72. |
[15] | 刘越;朱平;李旦. SIP改性异形聚酯纤维的碱水解性能[J]. 纺织学报, 2009, 30(04): 28-32. |
|