纺织学报 ›› 2020, Vol. 41 ›› Issue (02): 136-142.doi: 10.13475/j.fzxb.20190102907

• 机械与器材 • 上一篇    下一篇

多弹性支承-轴向运动导纱梳栉的振动模型

苏柳元1, 孟婥1(), 王亚诚1, 葛晓逸2, 张玉井1   

  1. 1.东华大学 机械工程学院, 上海 201620
    2.福建屹立智能化科技有限公司, 福建 莆田 351146
  • 收稿日期:2019-01-14 修回日期:2019-10-09 出版日期:2020-02-15 发布日期:2020-02-21
  • 通讯作者: 孟婥
  • 作者简介:苏柳元(1990—),女,博士生。主要研究方向为经编机械动力学、优化设计。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(CUSF-DH-D-2017061);福建省“百人计划”项目(20180409)

Vibration model of elastically-supported axially moving guide bar

SU Liuyuan1, MENG Zhuo1(), WNAG Yacheng1, GE Xiaoyi2, ZHANG Yujing1   

  1. 1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
    2. Yili Intelligent Technology Co., Ltd., Putian, Fujian 351146, China
  • Received:2019-01-14 Revised:2019-10-09 Online:2020-02-15 Published:2020-02-21
  • Contact: MENG Zhuo

摘要:

针对经编机导纱梳栉由于弯曲振动造成导纱针与舌针摩擦的问题,基于连续梁理论从静态和动态方面建立了导纱梳栉的振动模型。通过能量法获得导纱梳栉的振动方程,通过边界条件和连续性条件获得导纱梳栉的特征方程和模态函数。在静态情况下,研究了不同材料和支承刚度对导纱梳栉固有频率和振型的影响;在动态情况下,研究了轴向速度、加速度和横移时间对导纱梳栉固有频率的影响。研究结果表明,材料和支承刚度对导纱梳栉振动的影响显著,而速度、加速度和横移时间的影响较小。研究结果可为减小导纱梳栉的弯曲振动和优化经编机的横移系统提供参考。

关键词: 多弹性支承, 轴向运动, 导纱梳栉, 振动模型, 连续梁

Abstract:

Aiming at the friction problem between guide needle and latch needle caused by the bending vibration of guide bars in a warp knitting machine, the vibration model of the thread guide bar was established from static and dynamic perspectives based on the continuous beam theory. The vibration equation of the guide bar was obtained by energy method, and the characteristics equation and mode function were built based on the boundary conditions and continuity conditions. In the case of static loading, the effects of materials and support stiffness on the frequencies and mode shapes were investigated. When the dynamical loading was considered, the effects of axial velocity, acceleration, and the transverse time on the natural frequencies were evaluated. The study shows that the influences of the materials and support stiffness are significant, while the influences of the velocity, acceleration, and transverse time are small, which provide reference for reducing the bending vibration of guide bar and optimizing the guide bar shogging system in the warp knitting machine.

Key words: multi-elastically-supported, axially-moving, guide bar, vibration model, continuous beam

中图分类号: 

  • TH113.1

图1

梳栉横移系统结构原理图"

图2

多弹性支承梁"

表1

不同材料导纱梳栉的第一阶固有频率"

梳栉材料 密度/
(kg·m-3)
弹性模量/
GPa
第一阶固有
频率/Hz
铝合金 2 730 69 113.83
镁铝合金 1 800 45 113.23
碳纤维复合材料 1 950 210~300 234.75~280.40

表2

不同支承刚度导纱梳栉的前三阶固有频率"

固有频
率/Hz
支承刚度Kk/(kN·m-1)
2 000 4 000 8 000 20 000 100 000
第一阶 110.18 112.51 113.28 113.66 113.84
第二阶 126.14 131.38 133.72 135.06 135.76
第三阶 130.58 143.38 150.72 155.25 157.67

图3

不同支承刚度导纱梳栉的前三阶模态振型"

图4

轴向运动弹性支承梁模型"

图5

导纱梳栉第一阶固有频率随轴向速度变化图"

图6

导纱梳栉第一阶固有频率随轴向加速度变化图"

图7

恒加速恒减速运动模式"

图8

导纱梳栉第一阶固有频率随横移时间变化"

[1] YESILCE Y, DEMIRDAG O, CATAL S. Free vibrations of a multi-span Timoshenko beam carrying multiple spring-mass systems[J]. Sadhana, 2008,33(4):385.
[2] 叶茂, 谭平, 任珉, 等. 中间带弹性支承各种边界条件连续梁模态分析[J]. 工程力学, 2010,27(9):80-85.
YE Mao, TAN Ping, REN Min, et al. Modal analysis of multi-span beams with intermediate flexible constraints and different boundary conditions[J]. Engineering Mechanics, 2010,27(9):80-85.
[3] JOHANSSON C, PACOSTE C, KAROUMI R. Closed-form solution for the mode superposition analysis of the vibration in multi-span beam bridges caused by concentrated moving loads[J]. Computers & Structures, 2013,119:85-94
[4] 刘向尧, 聂宏, 魏小辉. 复杂边界条件下的多跨梁的振动模型[J]. 北京航空航天大学学报, 2015,41(5):841-846.
LIU Xiangyao, NIE Hong, WEI Xiaohui. Vibration model for multi-span beam with arbitrary complex boundary conditions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015,41(5):841-846.
[5] YANG T, FANG B, YANG X D, et al. Closed-form approximate solution for natural frequency of axially moving beams[J]. International Journal of Mechanical Sciences, 2013,74(13):154-160.
[6] LV H, LI Y, LI L, et al. Transverse vibration of viscoelastic sandwich beam with time-dependent axial tension and axially varying moving velocity[J]. Applied Mathematical Modelling, 2014,38(9/10):2558-2585.
[7] PARK S, CHUNG J. Dynamic analysis of an axially moving finite-length beam with intermediate spring supports[J]. Journal of Sound & Vibration, 2014,333(24):6742-6759.
[8] LIU X, NIE H, WEI X. Vibration model for multi-span beam with arbitrary complex boundary condi-tions[J]. Journal of Beijing University of Aeronautics & Astronautics, 2015,41(5):841-846.
[9] TANG Y Q, CHEN L Q, YANG X D. Natural frequencies, modes and critical speeds of axially moving Timoshenko beams with different boundary condi-tions[J]. International Journal of Mechanical Sciences, 2008,50(10/11):1448-1458.
[10] LEE U, OH H. Dynamics of an axially moving viscoelastic beam subject to axial tension[J]. International Journal of Solids & Structures, 2005,42(8):2381-2398.
[11] 苏柳元, 孟婥, 张玉井, 等. 经编机梳栉横移系统误差建模与仿真[J]. 纺织学报, 2018,39(8):139-142.
SU Liuyuan, MENG Zhuo, ZHANG Yujing, et al. Modeling and simulation of teansverse motion error of guide bar shogging system of warp knitting machine[J]. Journal of Textile Research, 2018,39(8):139-142.
[1] 戴宁, 彭来湖, 胡旭东, 钟垚森, 戚栋明. 基于轴向运动悬臂梁理论的无缝内衣机织针横向振动特性[J]. 纺织学报, 2021, 42(02): 193-200.
[2] 徐洋 程福荣 盛晓伟 孙志军 余智祺. 纱线束横向动态振动特性仿真与实验[J]. 纺织学报, 2018, 39(05): 113-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!