纺织学报 ›› 2020, Vol. 41 ›› Issue (02): 136-142.doi: 10.13475/j.fzxb.20190102907
SU Liuyuan1, MENG Zhuo1(), WNAG Yacheng1, GE Xiaoyi2, ZHANG Yujing1
摘要:
针对经编机导纱梳栉由于弯曲振动造成导纱针与舌针摩擦的问题,基于连续梁理论从静态和动态方面建立了导纱梳栉的振动模型。通过能量法获得导纱梳栉的振动方程,通过边界条件和连续性条件获得导纱梳栉的特征方程和模态函数。在静态情况下,研究了不同材料和支承刚度对导纱梳栉固有频率和振型的影响;在动态情况下,研究了轴向速度、加速度和横移时间对导纱梳栉固有频率的影响。研究结果表明,材料和支承刚度对导纱梳栉振动的影响显著,而速度、加速度和横移时间的影响较小。研究结果可为减小导纱梳栉的弯曲振动和优化经编机的横移系统提供参考。
中图分类号:
[1] | YESILCE Y, DEMIRDAG O, CATAL S. Free vibrations of a multi-span Timoshenko beam carrying multiple spring-mass systems[J]. Sadhana, 2008,33(4):385. |
[2] | 叶茂, 谭平, 任珉, 等. 中间带弹性支承各种边界条件连续梁模态分析[J]. 工程力学, 2010,27(9):80-85. |
YE Mao, TAN Ping, REN Min, et al. Modal analysis of multi-span beams with intermediate flexible constraints and different boundary conditions[J]. Engineering Mechanics, 2010,27(9):80-85. | |
[3] | JOHANSSON C, PACOSTE C, KAROUMI R. Closed-form solution for the mode superposition analysis of the vibration in multi-span beam bridges caused by concentrated moving loads[J]. Computers & Structures, 2013,119:85-94 |
[4] | 刘向尧, 聂宏, 魏小辉. 复杂边界条件下的多跨梁的振动模型[J]. 北京航空航天大学学报, 2015,41(5):841-846. |
LIU Xiangyao, NIE Hong, WEI Xiaohui. Vibration model for multi-span beam with arbitrary complex boundary conditions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015,41(5):841-846. | |
[5] | YANG T, FANG B, YANG X D, et al. Closed-form approximate solution for natural frequency of axially moving beams[J]. International Journal of Mechanical Sciences, 2013,74(13):154-160. |
[6] | LV H, LI Y, LI L, et al. Transverse vibration of viscoelastic sandwich beam with time-dependent axial tension and axially varying moving velocity[J]. Applied Mathematical Modelling, 2014,38(9/10):2558-2585. |
[7] | PARK S, CHUNG J. Dynamic analysis of an axially moving finite-length beam with intermediate spring supports[J]. Journal of Sound & Vibration, 2014,333(24):6742-6759. |
[8] | LIU X, NIE H, WEI X. Vibration model for multi-span beam with arbitrary complex boundary condi-tions[J]. Journal of Beijing University of Aeronautics & Astronautics, 2015,41(5):841-846. |
[9] | TANG Y Q, CHEN L Q, YANG X D. Natural frequencies, modes and critical speeds of axially moving Timoshenko beams with different boundary condi-tions[J]. International Journal of Mechanical Sciences, 2008,50(10/11):1448-1458. |
[10] | LEE U, OH H. Dynamics of an axially moving viscoelastic beam subject to axial tension[J]. International Journal of Solids & Structures, 2005,42(8):2381-2398. |
[11] | 苏柳元, 孟婥, 张玉井, 等. 经编机梳栉横移系统误差建模与仿真[J]. 纺织学报, 2018,39(8):139-142. |
SU Liuyuan, MENG Zhuo, ZHANG Yujing, et al. Modeling and simulation of teansverse motion error of guide bar shogging system of warp knitting machine[J]. Journal of Textile Research, 2018,39(8):139-142. |
[1] | 戴宁, 彭来湖, 胡旭东, 钟垚森, 戚栋明. 基于轴向运动悬臂梁理论的无缝内衣机织针横向振动特性[J]. 纺织学报, 2021, 42(02): 193-200. |
[2] | 徐洋 程福荣 盛晓伟 孙志军 余智祺. 纱线束横向动态振动特性仿真与实验[J]. 纺织学报, 2018, 39(05): 113-118. |
|