纺织学报 ›› 2020, Vol. 41 ›› Issue (02): 172-178.doi: 10.13475/j.fzxb.20190100107

• 综合述评 • 上一篇    下一篇

织物起毛起球机制的理论模型研究进展

肖琪1,2,3, 王瑞1,3(), 孙红玉4, 方纾1,3, 李聃阳1,3   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.常熟理工学院, 江苏 常熟 215500
    3.天津工业大学 先进纺织复合材料教育部重点实验室, 天津 300387
    4.滨州华纺工程技术研究院有限公司, 山东 滨州 256600
  • 收稿日期:2019-01-02 修回日期:2019-11-22 出版日期:2020-02-15 发布日期:2020-02-21
  • 通讯作者: 王瑞
  • 作者简介:肖琪(1988—),女,博士生。主要研究方向为纺织品的结构与性能。

Research progress on theoretical models of mechanisms of fuzzing and pilling

XIAO Qi1,2,3, WANG Rui1,3(), SUN Hongyu4, FANG Shu1,3, LI Danyang1,3   

  1. 1. School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Changshu Institute of Technology, Changshu, Jiangsu 215500, China
    3. Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
    4. Binzhou Huafang Engineering Technology Research Institute Co., Ltd., Binzhou,Shandong 256600, China
  • Received:2019-01-02 Revised:2019-11-22 Online:2020-02-15 Published:2020-02-21
  • Contact: WANG Rui

摘要:

针对织物起毛起球机制复杂的现状,归纳分析了化学反应动力学、机械动力学、人工神经网络、纤维形尺度等4类织物起毛起球机制理论模型的建模条件、理论基础和应用情况,预测了织物起毛起球机制研究的发展方向。分析发现:化学反应动力学模型需求解未知参数;机械动力学模型的精度较理想,但计算繁琐;人工神经网络模型需要大量训练样本加强泛化能力;纤维形尺度模型的实际应用能力强,但不能量化解释起毛起球机制。最后指出未来应在提高现有模型精度的同时,改进求解模型中的未知参数;应用分形数学、计算机仿真、有限元等新技术,从微观角度研究单根纤维在起毛起球过程中的几何非线性变形,建立新型的理论模型,同时提高其应用能力。

关键词: 织物, 起毛起球, 理论模型, 化学反应动力学, 机械动力学, 人工神经网络

Abstract:

Aiming at the understanding of fabric pilling mechanisms, modeling conditions, theoretical principles and applied ranges of 4 types of models, based on kinetics of chemical reaction, mechanical dynamics, artificial neural network, and fiber shape scale theory model, for fabric pilling mechanisms were reviewed and discussed, with a focus on the trend on research in fabric pilling mechanisms. It is realized that some unknown parameters will have to be solved in order to use the chemical reaction kinetic model, and that the mechanical dynamics model requires complicated calculation despite high precision. A large number of training samples are required to enhance the generalization ability when using the artificial neural network model, and the mechanism of pilling cannot be quantified in the fiber scale model though the practical application is feasible. In conclusion, the review suggested that the accuracy of models and methods of solving the unknown parameters should be improved in the future. Fractal mathematics, computer simulation, finite element and other techniques should be applied to the study of geometrical nonlinear deformation of single fibers in the pilling process from the microscopic perspective to facilitate a new theoretical model. At the same time, the practical application ability of the model should be improved.

Key words: fabric, fuzzing and pilling, theoretical model, kinetics of chemical reaction, mechanical dynamics, artificial nural network

中图分类号: 

  • TS101.9

图1

起毛起球的反应过程"

图2

简化的化学反应动力学模型"

图3

起毛起球的动力学扩展模型 注:U为圈毛羽和端毛羽;V为不起球的毛羽;Zr为脱落的毛羽;L为不起球的圈毛羽;M为起球的圈毛羽;W为起球的毛羽;Zw为脱 落的毛羽;X为织物表面的毛球;Y为脱落的毛球。"

图4

起毛起球的顺序"

[1] WAN A L, JIANG G M, YU W D, et al. Fuzzing mechanism and fibre fatigue of wool knit[J]. Indian Journal of Fibre & Textile Research, 2014,39(3):238-243.
[2] WAN A L, YU W D. Effect of fiber morphology and dimensions on fuzzing and pilling of wool knitted fa-brics[C]//Proceedings of the 12th International Wool Research Conference. Beijing:China Textile & Apparel Press, 2010: 44-47.
[3] HAJILARI M, ESFANDIARI A H, DABIRYAN H. Investigation of effect of fibers modulus on pilling of acrlic fabrics[J]. The Journal of the Textile Institute, 2009,100(2):135-140.
[4] WAN A L, YU W D. Effect of morphology and structure of fiber and yarn on fuzzing and pilling of wool knitted fabrics[C]//LUO Q, WANG Y Z. Advanced Materials Science And Technology. Switzerland: Trans Tech Publications Ltd, 2011: 474-479.
[5] KAYSERI G O, KIRTAY E. Part II. predicting the pilling tendency of the cotton interlock knitted fabrics by artificial neural network[J]. Journal of Engineered Fibers and Fabrics, 2015,10(4):62-71.
[6] REJALI M, HASANI H, AJELI S, et al. Optimization and prediction of the pilling performance of weft knitted fabrics produced from wool/acrylic blended yarns[J]. Indian Journal of Fibre & Textile Research, 2014,39(1):83-88.
[7] NAEEM F. Pilling performance improvements of fabrics made with bamboo rayon and bamboo rayon/cotton blends[J]. AATCC Journal of Research, 2018,5(6):8-16.
[8] AZEEM M, AHMAD Z, WIENER J, et al. Influence of weave design and yarn types on mechanical and surface properties of woven fabric[J]. Fibres & Textiles in Eastern Europe, 2018,26(1):42-45.
[9] LI L Y, ZHU M, WEI X. Pilling performance of cashmere knitted fabric of woollen ring yarn and mule yarn[J]. Fibres & Textiles in Eastern Europe, 2014,22(1):74-75.
[10] REN C J, ZHENG S Y, LIU H F, et al. Evaluation of fabric pilling based on hough transform and gabor filter[C]//LI J B. Proceedings First International Conference on Electronics Instrumentation & Information Systems. New York: The Institute of Electrical and Electronics Engineers, Inc, 2017, 319-322.
[11] XU B, YU W, WANG R. Stereovision for three-dimensional measurements of fabric pilling[J]. Textile Research Journal, 2011,81(20):2168-2179.
[12] YUN S Y, KIM S, PARK C K. Development of an objective fabric pilling evaluation method. II. fabric pilling grading using artificial neural network[J]. Fibers and Polymers, 2013,14(12):2157-2162.
doi: 10.1007/s12221-013-2157-1
[13] 兰红艳. 织物起毛起球的因素分析[J]. 上海毛麻科技, 2010(1):6-9.
LAN Hongyan. Analysis on the factors of the fabric pilling property[J]. Shanghai Wool & Jute Journal, 2010(1):6-9.
[14] 王科林, 孟霞, 李腊梅, 等. 精纺绒面毛织物的抗起毛起球整理[J]. 印染, 2015,41(14):35-37,41.
WANG Kelin, MENG Xia, LI Lamei, et al. Anti-pilling finish of worsted wool fabric[J]. China Dyeing & Finishing, 2015,41(14):35-37,41.
[15] 周矿. 涤棉混纺面料抗起毛起球性能改进研究[J]. 化纤与纺织技术, 2017,46(4):17-20.
ZHOU Kuang. Study on the anti-pilling improvement of cotton/polyester blended fabrics[J]. Chemical Fiber & Textile Technology, 2017,46(4):17-20.
[16] WAN A L, DAI X J J, MAGNIEZ K, et al. Reducing the pilling propensity of wool knits with a three-step plasma treatment[J]. Textile Research Journal, 2013,83(19):2051-2059.
doi: 10.1177/0040517513478459
[17] MONTAZER M, MAZAHERI F, KHOSRAVIAN S, et al. Application of resins and crosslinking agents on fiber blend fabric to reduce pilling performance, optimized by response surface methodology[J]. Journal of Vinyl & Additive Technology, 2011,17(3):213-221.
[18] HAJILARI M, TOFIGHI S, DABIRYAN H. Effect of cellusoft enzyme treatment on the pilling performance of weft-knitted fabrics using image analysis[J]. Journal of the Textile Institute, 2016,107(7):849-853.
[19] WAN A L, YU W D. Evaluation of the wool fiber surface modified by chlorine and pilling propensity of single jersey[C]//ZENG J M, LI T S, MA S J, et al. Advanced Engineering Materials. Switzerland: Trans Tech Publications Ltd, 2011: 2380-2383.
[20] JOKISCH S, SCHEIBEL T. Spider silk foam coating of fabric[J]. Pure and Applied Chemistry, 2017,89(12):1769-1776.
[21] TUSIEF M Q, MAHMOOD N, SALEEM M. Effect of different anti pilling agents to reduce pilling on polyester/cotton fabric[J]. Journal of the Chemical Society of Pakistan, 2012,34(1):53-57.
[22] GINTIS D, MEAD E J. The mechanism of pilling[J]. Textile Research Journal, 1959,29(7):578-585.
doi: 10.1177/004051755902900709
[23] COOKE W. The influence of fiber fatigue on the pilling. part 2: fiber entanglement and pill growth[J]. Journal of the Textile Institute, 1983,74(3):101-108.
[24] COOKE W. Pilling attrition and fatigue[J]. Textile Research Journal, 1985,55(7):409-414.
[25] 于伟东. 纺织材料学[M]. 北京:中国纺织出版社, 2006: 324-326.
YU Weidong. Textile material science[M]. Beijing:China Textile & Apparel Press, 2006: 324-326.
[26] BRAND R, BOHMFALK B. A mathematical model of pilling mechanisms[J]. Textile Research Journal, 1967,37(6):467-486.
[27] CONTI W, TASSINAR. E. A simplified kinetic model for the mechanism of pilling[J]. Journal of the Textile Institute, 1974,65(3):119-125.
[28] WILLIAMS A H. A kinetic model for pilling of wool knitwear[J]. Textile Research Journal, 1985,55(5):312-320.
[29] 李茂松, 李宗富. 涤纶低弹丝织物的起毛起球机理[J]. 纺织学报, 1986(12):15-21,12.
LI Maosong, LI Zongfu. The pilling mechanism of texturized PE filament yarn fabric[J]. Journal of Textile Research, 1986(12):15-21,12.
[30] 刘蕾. 大豆蛋白纤维织物起毛起球机理分析及其改善方法研究[D]. 上海: 东华大学, 2004: 34-48.
LIU Lei. Study on fuzzing and pilling mechanism and its improving method of soybean protein fabric[D]. Shanghai: Donghua University, 204:34-48.
[31] 王碧峤. 牛奶蛋白纤维针织产品起毛起球性能研究[D]. 上海: 东华大学, 2009: 29-42.
WANG Biqiao. Study on the fuzzing and pilling performance of milk protein fiber knitted fabric[D]. Shanghai:Donghua University, 2009: 29-42.
[32] WANG B Q, ZHANG P H. Study on the fuzzing and pilling performance of milk protein knitted fabrics[C]//Proceedings of 2009 International Conference on Advanced Fibers and Polymer Materials. Beijing: Chemical Industry Press, 2009, 875-876.
[33] COOKE W. A simulation model of the pilling pro-cess[J]. Journal of the Textile Institute, 1981,72(3):111-120.
[34] COOKE W. Fiber fatigue and the pilling cycle part 3 pill wear off and fabric attrition[J]. Journal of the Textile Institute, 1984,75(3):201-211.
[35] 朱鹏. 纳米莫代尔针织物抗起球性研究[D]. 苏州: 苏州大学, 2012: 7-13.
ZHU Peng. Study on anti-pilling of nano-modal knitted fabric[D]. Suzhou: Soochow University, 2012: 7-13.
[36] NAYLOR G R S, AISSANI N, RAMSEY D J. The kinetic model of pilling revisited[J]. Textile Research Journal, 2011,81(3):247-253.
[37] HEARLE J W S, WILKINS A H. Mechanistic modelling of pilling: part Ⅰ: detailing of mechanisms[J]. Journal of the Textile Institute, 2006,97(4):359-368.
[38] HEARLE J W S, WILKINS A H. Movement of fibers in assemblies[J]. Journal of the Textile Institute, 2006,97(1):1-9.
[39] WILKINS A H. Fibre slippage in cyclically perturbed fibrous assemblies[J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 2006,462(2066):517-530.
[40] HEARLE J W S, WILKINS A H. Mechanistic modelling of pilling. part II: Individual-fibre computational model[J]. Journal of the Textile Institute, 2006,97(4):369-376.
[41] 孔雪. 全毛针织物起毛与起球行为特征和数学建模[D]. 上海: 东华大学, 2015: 43-53.
KONG Xue. Behavior and mathematical model of fuzzing and pilling of wool fabrics[D]. Shanghai: Donghua University, 2015: 43-53.
[42] 孔雪, 于伟东. 羊毛针织物起球行为及平台区形态[J]. 纺织学报, 2015,36(10):38-43.
KONG Xue, YU Weidong. Behavior of pilling of wool knitted fabric and its platform region morphology[J]. Journal of Textile Research, 2015,36(10):38-43.
[43] BELTRAN R, WANG L, WANG X G. A controlled experiment on yarn hairiness and fabric pitting[J]. Textile Research Journal, 2007,77(3):179-183.
[44] BELTRAN R, WANG L, WANG X. Measuring the influence of fibre-to-fabric properties on the pilling of wool fabrics[J]. Journal of the Textile Institute, 2006,97(3):197-204.
doi: 10.1533/joti.2005.0142
[45] BELTRAN R, WANG L J, WANG X G. Predicting the pilling propensity of fabrics through artificial neural network modeling[J]. Textile Research Journal, 2005,75(7):557-561.
doi: 10.1177/0040517505056872
[46] 陈霞. 基于切面投影图像的织物起球等级的计算机视觉评定[D]. 上海:东华大学, 2004: 69-89.
CHEN Xia. The evaluation of pilling grade of fabrics using computer vision based on tangential projected images[D]. Shanghai: Donghua Uniersity, 2004: 69-89.
[47] 艾宏玲, 崔萍, 郭润兰. 神经网络技术在精纺粗花呢起毛起球等级评定中的应用[J]. 西安工程科技学院学报, 2007(2):163-167.
AI Hongling, CUI Pin, GUO Runlan. Application of the artificil neural network technology on evaluating pilling grade of worsted tweed fabric[J]. Journal of Xi'an University of Engineering Science And Technology, 2007(2):163-167.
[48] 邓文. 基于小波变换的织物起球等级的客观评定[D]. 武汉: 武汉纺织大学, 2012: 44-48.
DENG Wen. Objective assessment of fabric pilling grade based on wavelet transform[D]. Wuhan:Wuhan Textile University, 2012: 44-48.
[49] 万爱兰, 于伟东, 蒋高明. 起毛起球表征技术的研究进展与问题[J]. 纺织学报, 2014,35(5):157-164.
WAN Ailan, YU Weidong, JIANG Gaoming. Research prgress and existing problems about characterizing fuzzing and pilling[J]. Journal of Textile Research, 2014,35(5):157-164.
[50] 于伟东, 万爱兰. 羊毛的形与尺度对起毛起球的作用[J]. 纺织学报, 2012,33(1):144-150.
YU Weidong, WAN Ailan. Effects of wool morphology and diameter on fuzzing and pilling[J]. Journal of Textile Research, 2012,33(1):144-150.
[51] 万爱兰, 于伟东. 羊毛表面特征对针织物起毛起球的影响[J]. 纺织学报, 2011,32(12):28-33.
WAN Ailan, YU Weidong. Effects of wool fiber surface characteristic on fuzzing and pilling of knitted fabric[J]. Journal of Textile Research, 2011,32(12):28-33.
[52] 万爱兰. 基于形尺度的抗起毛起球机制及其评价方法[D]. 上海: 东华大学, 2013: 20-38.
WAN Ailan. Mechanism of fuzzing and pilling resistance based on morphological dimensions and method of evaluation[D]. Shanghai: Donghua University, 2013: 20-38.
[1] 张昭华, 唐香宁, 李俊, 李璐瑶. 织物与皮肤动态接触下的湿感觉阈限与强度评价[J]. 纺织学报, 2021, 42(02): 93-100.
[2] 孟朔, 夏旭文, 潘如如, 周建, 王蕾, 高卫东. 基于卷积神经网络的机织物密度均匀性检测[J]. 纺织学报, 2021, 42(02): 101-106.
[3] 郝尚, 谢源, 翁佳丽, 张维, 姚继明. 溶解刻蚀辅助构建棉织物超疏水表面[J]. 纺织学报, 2021, 42(02): 168-173.
[4] 肖彩勤, 孙丰鑫, 高卫东. 基于屈诱多形态力学测试的织物外观平整度表征[J]. 纺织学报, 2021, 42(02): 80-86.
[5] 黄笛, 李芳, 李刚. 涤纶/ 蚕丝机织心脏瓣膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 74-79.
[6] 孙亚博, 李立军, 马崇启, 吴兆南, 秦愈. 基于ABAQUS 的筒状纬编针织物拉伸力学性能模拟[J]. 纺织学报, 2021, 42(02): 107-112.
[7] 刘立东, 李新荣, 刘汉邦, 李丹丹. 服装面料静电吸附抓取转移电极板优化设计[J]. 纺织学报, 2021, 42(02): 185-192.
[8] 刘海桑, 蒋高明, 董智佳. 基于Web 的少梳经编色织物仿真与虚拟展示[J]. 纺织学报, 2021, 42(02): 87-92.
[9] 张雪飞, 李婷婷, 许炳铨, 林佳弘, 楼静文. 用低温界面聚合法制备多功能核壳结构热电织物[J]. 纺织学报, 2021, 42(02): 174-179.
[10] 娄娅娅, 王静, 董燕超, 王春梅. 粘胶基沸石咪唑骨架材料的制备及其对染料的脱色[J]. 纺织学报, 2021, 42(02): 142-147.
[11] 蔡露, 康佳良, 吕存, 何雪梅. 自交联氟化聚丙烯酸酯乳液的制备及其应用性能[J]. 纺织学报, 2021, 42(02): 161-167.
[12] 侯文双, 闵洁, 纪峰, 张建祥, 苏梦, 何瑞娴. 织物紧度和抗皱整理工艺对纯棉机织物折皱回复性的影响[J]. 纺织学报, 2021, 42(01): 118-124.
[13] 鲁鹏, 洪思思, 林旭, 李慧, 刘国金, 周岚, 邵建中, 柴丽琴. 活性染料/聚苯乙烯复合胶体微球的制备及其在桑蚕丝织物上的结构生色[J]. 纺织学报, 2021, 42(01): 90-95.
[14] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
[15] 曾凡鑫, 秦宗益, 沈玥莹, 陈园余, 胡铄. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(01): 103-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!