纺织学报 ›› 2020, Vol. 41 ›› Issue (02): 109-114.doi: 10.13475/j.fzxb.20190103306

• 服装工程 • 上一篇    下一篇

手臂活动角度对服装局部热阻的影响

肖平1,2,3, 张昭华1,2,3(), 周莹1,2, 刘佳锴1,2, 唐颢源1,2   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
    3.同济大学 上海国际设计创新研究院, 上海 200092
  • 收稿日期:2019-01-15 修回日期:2019-11-14 出版日期:2020-02-15 发布日期:2020-02-21
  • 通讯作者: 张昭华
  • 作者简介:肖平(1979—),女,讲师,博士。主要研究方向为服装人体工效学。
  • 基金资助:
    国家自然科学基金项目(11602055);中央高校基本科研业务费专项资金资助项目(2232019G-08)

Influence of arm angular motion on clothing local thermal insulation

XIAO Ping1,2,3, ZHANG Zhaohua1,2,3(), ZHOU Ying1,2, LIU Jiakai1,2, TANG Haoyuan1,2   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051,China
    3. Shanghai Institute of Design and Innovation, Tongji University, Shanghai 200092, China
  • Received:2019-01-15 Revised:2019-11-14 Online:2020-02-15 Published:2020-02-21
  • Contact: ZHANG Zhaohua

摘要:

为研究手臂活动角度对衣下间隙局部分布及服装局部散热性能的影响,利用三维扫描仪量化了出汗暖体假人在6种手臂姿势下,12个体段的衣下间隙体积及接触面积,提取了表征人体活动空间大小的物理指标,测量了服装各体段的局部热阻。结果表明:手臂的前伸角度与衣下间隙体积呈负相关性,而与接触面积呈显著正相关性,人体的活动空间随着手臂前伸角度的增加而显著减少;各体段的局部有效热阻呈现出非均匀的分布状态,局部衣下空气层体积越大、接触面积越小的体段,其有效热阻越大。服装的有效热阻可用衣下间隙体积与接触面积百分比共同预测。

关键词: 手臂活动角度, 衣下间隙, 服装舒适性, 接触面积, 服装热阻

Abstract:

To investigate the influence of arm angular motion on local air gap distribution and clothing heat transfer performance, a 3-D scanner was utilized to quantify the local air gap volume and contacting area of 12 body segments of a sweating manikin under six arm postures. An index to describe the activity space of human body was established and the clothing local thermal insulation was measured as well. The results show that the protraction angles of arm are significantly positively correlated with contacting area, but negatively correlated with air gap volume. The activity space of human body is dramatically decreased with the increase of arm protraction angle. The local thermal insulation of body segments displays an uneven distribution state, which body segments with bigger air gap volumes and smaller contacting areas show greater effective thermal insulation. The effective thermal insulation of clothing could be predicted by air gap volume and contacting area proportion.

Key words: arm activity angle, air gap volume, clothing comfort, contacting area, clothing thermal insulation

中图分类号: 

  • TS941.16

图1

Newton出汗假人体段分区图"

表1

实验选取的假人12个体段名称"

对应假人的
体段编号
各躯体
中文名称
各体段名称
缩写(全称)
3 右前上臂 RUAF(right up arm front)
4 右后上臂 RUAB(right up arm back)
5 左前上臂 LUAF(left up arm front)
6 左后上臂 LUAB(left up arm back)
7 右前小臂 RFF(right forearm front)
8 右后小臂 RFB(right forearm back)
9 左前小臂 LFF(left forearm front)
10 左后小臂 LFB(left forearm back)
13 胸部 UC(up chest)
14 上后背 UB(up back)
15 腹部 ST(stomach)
16 中后背 MB(middle back)

图2

手臂支架"

图3

服装款式图"

表2

服装规格尺寸"

部位名称 尺寸 部位名称 尺寸
前身长 76 袖长 61.5
后身长 77 肩宽 44
胸围 114 领围 43

表3

手臂前伸动作"

动作及说明 动作名称 左/右臂前伸角度
参考动作,双臂自然下垂 M0 0°/0°
右臂抬起45°,左臂自然下垂 M1 0°/45°
右臂抬起90°,左臂自然下垂 M2 0°/90°
右臂抬起135°,左臂自然下垂 M3 0°/135°
右臂抬起135°,左臂抬起45° M4 45°/135°
右臂抬起135°,左臂抬起90° M5 90°/135°

图4

各体段的衣下间隙体积"

表4

衣下间隙体积与手臂动作的相关系数"

体段 相关系数 显著性 体段 相关系数 显著性
RUAF -0.974** 0.001 LFF -0.77 0.073
RUAB -0.989** 0.001 LFB -0.933** 0.007
LUAF -0.713 0.112 UC 0.789 0.062
LUAB -0.821* 0.041 UB -0.979** 0.001
RFF -0.922** 0.009 ST 0.882* 0.02
RFB -0.904* 0.013 MB -0.818* 0.047

图5

各体段的接触面积百分比"

表5

接触面积百分比与手臂动作的相关系数"

体段 相关系数 显著性 体段 相关系数 显著性
RUAF 0.905* 0.013 LFF 0.798 0.057
RUAB 0.872* 0.024 LFB 0.867* 0.028
LUAF 0.867* 0.025 UC -0.788 0.063
LUAB 0.898* 0.015 UB 0.966** 0.002
RFF 0.777 0.069 ST -0.763 0.077
RFB 0.695 0.154 MB 0.986** 0.001

图6

各体段的有效热阻值"

[1] ASHDOWN S P, LOKER S, SCHOENFELDER K, et al. Using 3D scans for fit analysis[J]. Journal of Textile and Apparel Technology and Management, 2004,4(1):1-12.
[2] SONG G. Clothing air gap layers and thermal protective performance in single layer garment[J]. Journal of Industrial Textiles, 2007,36(3):193-205.
doi: 10.1177/1528083707069506
[3] COCA Aitor, WILLIAMS W Jon, ROBERGE Raymond J, et al. Effects of fire fighter protective ensembles on mobility and performance[J]. Applied Ergonomics, 2010,41:636-641.
doi: 10.1016/j.apergo.2010.01.001
[4] LIN X, ZHAI L, ZHANG M, et al. Ergonomic evaluation of protective clothing for earthquake disaster search and rescue team members[J]. International Journal of Clothing Science and Technology, 2016,28(6):820-829.
doi: 10.1108/IJCST-11-2015-0124
[5] PSIKUTA A, FRACKIEWICZ K J, MERT E, et al. Validation of a novel 3D scanning method for determination of the air gap in clothing[J]. Measurement, 2015,67:61-70.
doi: 10.1016/j.measurement.2015.02.024
[6] MERT E, BOEHNISCH S, PSIKUTA A, et al. Contribution of garment fit and style to thermal comfort at the lower body[J]. International Journal of Biometeorology, 2016,60(12):1995-2004.
doi: 10.1007/s00484-016-1258-0 pmid: 27757698
[7] WANG F, PENG H, SHI W. The relationship between air layers and evaporative resistance of male Chinese ethnic clothing[J]. Applied Ergonomics, 2016,56:194-202.
doi: 10.1016/j.apergo.2016.04.005 pmid: 27184328
[8] 于淼, 李俊, 王艺霈. 衣下空间体积与服装面料性能的关联性[J]. 纺织学报, 2012,33(4):100-105.
YU Miao, LI Jun, WANG Yipei. Correlation of fabric performances and space between garment and wearers'skin[J]. Journal of Textile Research, 2012,33(4):100-105.
[9] PSIKUTA A, FRACKIEWICZ K J, FRYDRYCH I, et al. Quantitative evaluation of air gap thickness and contact area between body and garment[J]. Textile Research Journal, 2012,82(14):1405-1413.
doi: 10.1177/0040517512436823
[10] FRACKIEWICZ K J, PSIKUTA A, BUENO M A, et al. Air gap thickness and contact area in undershirts with various moisture contents: influence of garment fit, fabric structure and fiber composition[J]. Textile Research Journal, 2015,85(20):2196-2207.
doi: 10.1177/0040517514551458
[11] MERT E, PSIKUTA A, BUENO M A, et al. The effect of body postures on the distribution of air gap thickness and contact area[J]. International Journal of Biometeorology, 2017,61(2):363-375.
doi: 10.1007/s00484-016-1217-9 pmid: 27522664
[12] LI X, WANG Y, LU Y. Effects of body motions on clothing air gap in protective clothing[C]//LI Y, LIU Y, LUO X, et al. The fourth textile bioengineering and informatics symposium. Beijing: Beijing Institute of Fashion Technology, 2011: 1399-1403.
[1] 姜茸凡, 王云仪. 人体着装黏感觉的研究进展[J]. 纺织学报, 2019, 40(05): 177-184.
[2] 刘亚男 丛杉. 可穿戴技术在人体健康监测中的应用进展[J]. 纺织学报, 2018, 39(10): 175-179.
[3] 张文欢 钱晓明 师云龙 范金土 牛丽. 服装局部热阻与总热阻的动静态关系及其模型[J]. 纺织学报, 2018, 39(07): 111-115.
[4] 张昭华 倪军 王文玲 曾恋 胡青青 韩依恬. 服装款式特征对人体局部传热性能的影响[J]. 纺织学报, 2018, 39(05): 92-96.
[5] 唐香宁 张昭华 李俊 李璐瑶 冯姝元 . 人体皮肤湿感觉的研究进展[J]. 纺织学报, 2017, 38(09): 174-180.
[6] 陶俊 王府梅 刘美娜 罗胜利. 上装保温性能测试新方法[J]. 纺织学报, 2017, 38(06): 92-99.
[7] 王珊珊 王蕾 朱博 王鸿博. 基于SolidWorks的在职男性颈部三维模型[J]. 纺织学报, 2015, 36(04): 107-112.
[8] 于瑶;钱晓明;范金土. 风速与步速对服装表面空气层热阻的影响[J]. 纺织学报, 2009, 30(08): 107-112.
[9] 陈益松;徐军;范金土. 暖体假人的出汗模拟方式与测量算法[J]. 纺织学报, 2008, 29(8): 130-134.
[10] 孙菲菲;李俊;韩嘉珅. 基于织物物理性能的服装舒适感觉的评价与预测[J]. 纺织学报, 2006, 27(11): 82-85.
[11] 李东平. 服装材料的保暖性与服装热阻之关系[J]. 纺织学报, 1998, 19(05): 28-30.
[12] 朱利军;张渭源. 国外出汗模拟系统的发展状况[J]. 纺织学报, 1998, 19(05): 62-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!