纺织学报 ›› 2020, Vol. 41 ›› Issue (03): 1-7.doi: 10.13475/j.fzxb.20190401407
• 纤维材料 • 下一篇
YUE Chengfei, DING Changkun(), LI Lu, CHENG Bowen
摘要:
为解决由湿法纺丝工艺制备的牛肌腱胶原蛋白纤维力学性能差、遇水易溶解等问题,采用1-乙基-3-(3-二甲基丙基)碳化二亚胺盐酸盐/N-羟基丁二酰亚胺(EDC/NHS)对胶原蛋白纤维进行交联改性。探究了原位交联方式的最优交联时间和交联剂质量分数,并着重对比了原位交联与交联浴交联2种交联方式对胶原蛋白纤维性能的影响。结果表明:原位交联可显著改善胶原蛋白纤维的性能,最优的交联时间和交联剂质量分数分别为11 h、15%,此时纤维断裂强度可达1.44 cN/dtex左右,较纯胶原蛋白纤维提高了35.8%,较交联浴交联纤维提高了19.0%;与主要发生在纤维表面的交联浴交联相比,原位交联能够使纤维内部的微纤结构更加致密,性能得到更为显著的提升,由原位交联制备的胶原蛋白纤维性能优于交联浴交联制备的纤维。
中图分类号:
[1] |
RICARBLUM S. The collagen family[J]. Cold Spring Harbor Perspectives in Biology, 2011,3(1):a004978.
doi: 10.1101/cshperspect.a004978 pmid: 21421911 |
[2] |
GORDON M K, HAHN R A. Collagens[J]. Cell Tissue Res, 2010,339(1):247-257.
pmid: 19693541 |
[3] |
SORUSHANOVA A, DELGADO L M, WU Z N, et al. The collagen suprafamily: from biosynjournal to advanced biomaterial development[J]. Advanced Materials, 2019,31(1).DOI: 10.1002/adma.1801651.
pmid: 30272829 |
[4] |
MILLER J P, IRVING A, FISCHETTI T C, et al. The in situ supermolecular structure of type I collagen[J]. Structure, 2001,9(11):1061-1069.
pmid: 11709170 |
[5] |
ZHU Shichen, YUAN Qijuan, YIN Tao, et al. Self-assembly of collagen-based biomaterials: preparation, characterizations and biomedical applications[J]. Journal of Materials Chemistry B, 2018,6:2650-2676.
doi: 10.1039/c7tb02999c pmid: 32254220 |
[6] | ZEUGOLI D I, PAUL R G, ATTENBURROW G. Factors influencing the properties of reconstituted collagen fibers prior to self-assembly: animal species and collagen extraction method[J]. Journal of Biomedical Materials Research: Part A, 2008,86(4):892-904. |
[7] | HUANG G P, SHANMUGASUNDARAM S, MASIH P, et al. An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds[J]. Journal of Biomedical Materials Research: Part A, 2015,103(2):762-771. |
[8] | 赵林双, 赵新哲, 高晶, 等. 柠檬酸原位交联胶原超细纤维膜的制备及其性能[J]. 东华大学学报(自然科学版), 2018,44(1):38-44. |
ZHAO Linshuang, ZHAO Xinzhe, GAO Jing, et al. Preparation and properties of microfiber membrane of collagen in-situ crosslinked by citric acid[J]. Journal of Donghua University (Natural Science Edition), 2018,44(1):38-44. | |
[9] | 杜建华, 丁长坤, 阙金红, 等. 胶原蛋白纤维的物理交联改性及性能研究[J]. 合成纤维工业, 2019,42(4):46-51. |
DU Jianhua, DING Changkun, QUE Jinhong, et al. Physical crosslinking modification and properties of collagen fibers[J]. China Synthetic Fiber Industry, 2019,42(4):46-51. | |
[10] | WEADOCK K S, MILLER E J, BELLINCAMP L D, et al. Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treat-ment[J]. Journal of Biomedical Materials Research: Part A, 1995,29(11):1373-1379. |
[11] | GAO Jing, GUO Huiwen, ZHAO Linshuang, et al. Water-stability and biological behavior of electrospun collagen/PEO fibers by environmental friendly crosslinking[J]. Fibers and Polymers, 2017,18(8):1496-1503. |
[12] | 王雪娟, 杨其武, 吴炜誉, 等. 改性剂对胶原蛋白复合纤维结构性能的影响[J]. 合成纤维工业, 2008,31(2):1-4. |
WANG Xuejuan, YANG Qiwu, WU Weiyu, et al. Effect of modifier on structure and properties of collagen composite fiber[J]. China Synthetic Fiber Industry, 2008,31(2):1-4. | |
[13] | 张积财, 丁长坤, 杨宁, 等. 戊二醛交联改性鼠尾Ⅰ型胶原蛋白纤维的结构与性能研究[J]. 合成纤维工业, 2016,39(2):26-29. |
ZHANG Jicai, DING Changkun, YANG Ning, et al. Structure and properties of rat tail tendon type I collagen fiber crosslinked with glutaraldehyde[J]. China Synthetic Fiber Industry, 2016,39(2):26-29. | |
[14] | 王迎军, 杨春蓉, 汪凌云. EDC/NHS交联对胶原物理化学性能的影响[J]. 华南理工大学学报(自然科学版), 2007,35(12):66-70. |
WANG Yingjun, YANG Chunrong, WANG Lingyun. Influence of EDC/NHS crosslinking on physicochemical properties of collagen[J]. Journal of South China University of Technology (Natural Science Edition), 2007,35(12):66-70. | |
[15] | 姜东林, 杨骏宇, 姜升阳, 等. 京尼平交联L-赖氨酸修饰胶原蛋白支架的性能和生物相容性[J]. 生物医学工程学杂志, 2014(4):816-821. |
JIANG Donglin, YANG Junyu, JIANG Shengyang, et al. Properties and biocompatibility of collagen scaffold modified by genipin cross-linked L-lysine[J]. Journal of Biomedical Engineering, 2014(4):816-821. | |
[16] | 李倩. I型胶原基复合纤维的制备及自组装行为研究[D]. 天津:天津工业大学, 2018: 15-16. |
LI Qian. Preparation and self-assembly behavior of type I collagen-based composite fibers[D]. Tianjin: Tiangong University, 2018: 15-16. | |
[17] |
USHA R, SREERAM K J, RAJARAM A. Stabilization of collagen with EDC/NHS in the presence of L-lysine: a comprehensive study[J]. Colloids and Surfaces B: Biointerfaces, 2012,90:83-90.
pmid: 22019452 |
[18] |
GREEN E C, ZHANG Yiying, LI Heng, et al. Gel-spinning of mimetic collagen and collagen/nano-carbon fibers: understanding multi-scale influences on molecular ordering and fibril alignment[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017,65:552-564.
doi: 10.1016/j.jmbbm.2016.08.022 pmid: 27697717 |
[19] | 李倩, 丁长坤, 张静, 等. 胶原/高分子量壳聚糖复合纤维的制备及其性能[J]. 纺织学报, 2018,39(5):8-13. |
LI Qian, DING Changkun, ZHANG Jing, et al. Preparation and properties of collagen/high-molecular weight chitosan composite fibers[J]. Journal of Textile Research, 2018,39(5):8-13. | |
[20] | 杜建华. I型胶原蛋白纤维的制备、改性及其性能研究[D]. 天津:天津工业大学, 2019: 24-25. |
DU Jianhua. Study on preparation, modification and properties of type I collagen fiber[D]. Tianjin: Tianjin Polytechnic University, 2019: 24-25. | |
[21] |
CHANG M C, TANAKA J. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde[J]. Biomaterials, 2002,23(24):4811-4818.
pmid: 12361620 |
[22] | 但卫华, 周文常, 曾睿, 等. 胶原-壳聚糖共混纺丝液的制备[J]. 中国皮革, 2006,35(7):35-38. |
DAN Weihua, ZHOU Wenchang, ZENG Rui, et al. The preparation of collagen-chitosan blended spinning solution[J]. China Leather, 2006,35(7):35-38. |
[1] | 杨萍, 严飙, 马丕波. 网状结构织物制备与应用研究进展[J]. 纺织学报, 2021, 42(01): 175-180. |
[2] | 陈美玉, 刘玉琳, 胡革明, 孙润军. 涡流纺纱线的包缠加捻对其力学性能的影响[J]. 纺织学报, 2021, 42(01): 59-66. |
[3] | 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77. |
[4] | 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36. |
[5] | 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2 对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41. |
[6] | 马跃, 郭静, 殷聚辉, 赵秒, 宫玉梅. 纤维素/氧化纤维素/南极磷虾蛋白复合抗菌纤维的制备与表征[J]. 纺织学报, 2020, 41(11): 34-40. |
[7] | 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7. |
[8] | 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14. |
[9] | 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31. |
[10] | 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14. |
[11] | 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173. |
[12] | 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14. |
[13] | 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105. |
[14] | 欧阳鹏飞, 张玉芳, 贾春紫, 张嘉煜. 用竹浆粕/ 离子液体复配体系纺制的再生纤维及其性能 [J]. 纺织学报, 2020, 41(01): 21-25. |
[15] | 李阵群, 许多, 魏春艳, 钱永芳, 吕丽华. 棉秆皮纤维素/ 氧化石墨烯纤维的制备及其力学性能和吸附性能 [J]. 纺织学报, 2020, 41(01): 15-20. |
|