纺织学报 ›› 2020, Vol. 41 ›› Issue (03): 160-167.doi: 10.13475/j.fzxb.20190601308

• 机械与器材 • 上一篇    下一篇

筒子纱纱笼纱杆的定位检测方法

王文胜1(), 李天剑1, 冉宇辰1, 卢影2, 黄民1   

  1. 1.北京信息科技大学 机电工程学院, 北京 100192
    2.北京机科国创轻量化科学研究院有限公司, 北京 100083
  • 收稿日期:2019-06-06 修回日期:2019-11-25 出版日期:2020-03-15 发布日期:2020-03-27
  • 作者简介:王文胜(1990—),男,讲师,博士。主要研究方向为图像处理。E-mail:ws_wang1128@126.com
  • 基金资助:
    国家重点研发计划项目(2017YFB1304004);北京市教师队伍建设-创新团队(市级)项目(PXM2019_014224_000016);北京信息科技大学学校科研基金项目(1925003)

Method for position detection of cheese yarn rod

WANG Wensheng1(), LI Tianjian1, RAN Yuchen1, LU Ying2, HUANG Min1   

  1. 1. Mechanical Electrical Engineering School, Beijing Information Science & Technology University, Beijing 100192, China
    2. Beijing National Innovation Institute of Lightweight Ltd., Beijing 100083, China
  • Received:2019-06-06 Revised:2019-11-25 Online:2020-03-15 Published:2020-03-27

摘要:

为提高筒子纱纱笼纱杆偏移程度的自动化检测率,同时解决磨损缺陷纱杆自动定位检测准确率低的问题,提出了一种改进的频率调谐显著性检测算法进行筒子纱纱笼纱杆定位检测。首先,利用纱杆杆头金属面反光的特点和纱杆距离底面较远的特点,利用环形光源局部照射提高目标与背景对比度。然后利用目标位于图像中心附近的先验知识设计了分块加权模板进行改进频率调谐显著性检测算法,计算图像显著度。将显著图像使用最大类间方差法进行自动阈值分割后得到二值图像,并通过形态学滤波剔除明显不是目标的区域,最后通过霍夫变换圆拟合得到最终纱杆杆头位置坐标。现场实验和对比算法表明:改进方法具有抗缺陷能力,同时具有抗光照变化能力,可应用于工厂白天和晚上光线变化场景的任务。

关键词: 机器视觉, 筒子纱, 定位检测, 显著性检测, 阈值分割

Abstract:

In order to improve the detection accuracy of cheese yarn packages and to reduce wear to the package rods, an improved frequency-tuned salient (FT) significance detection algorithm is proposed to detect the cheese yarn rod position. Firstly, making use of the characteristics of the metal surface reflection of yarn rods head and the farther distance of the yarn rods from the bottom surface, the local illumination of the ring light source was applied to improve the target and background contrast. Then, using a priori knowledge of the target located near the center of the image, a block weighting template was designed to improve the FT algorithm and calculate the image saliency. The maximum between-class variance method (OTSU) automatic threshold segmentation was performed on the salient image to obtain the binary image. Then, the region which was obviously not the target is removed by morphological filtration. Finally, the coordinates of the final yarn rods head position were obtained by Hough transform circular fitting. The field experiment and comparison algorithm show that the improved method has the ability to resist defects. In addition, it has the ability to resist light changes and can be applied to the daytime and nighttime lighting scenes of the factory.

Key words: machine vision, cheese yarn package, position detection, saliency detection, threshold segmentation

中图分类号: 

  • TP311.1

图1

图像区域等级划分示意图"

图2

纱杆定位检测算法流程图"

图3

纱杆定位检测系统整体结构图"

图4

工厂纱杆定位检测现场照片"

图5

定位程序逻辑框图"

图6

检测程序逻辑框图"

图7

正常标准图对应的不同分割方法检测结果"

图8

缺陷纱杆图对应的不同分割方法检测结果"

图9

高曝光参数图对应的不同分割方法检测结果"

图10

纱杆定位检测误差分析图"

[1] 童耀辉. 筒子(经轴)纱染色生产技术[M]. 北京: 中国纺织出版社, 2007: 10.
TONG Yaohui. Production technology of cheese (warp beam) yarn dyeing [M]. Beijing: China Textile & Apparel Press, 2007: 10.
[2] 吴士斌, 赵磊, 陈振唐, 等. 纱杆定位装置: ZL201811241429.4[P]. 2018 -10-24.
WU Shibin, ZHAO Lei, CHEN Zhentang, et al. -Yarn rod positioning device: ZL201811241429.4[P]. 201810-24.
[3] 顾桂鹏, 邵勇, 张钰婷, 等. 基于机器视觉的零件产品检测系统设计[J]. 工业控制计算机, 2017,30(1):21-22.
GU Guipeng, SHAO Yong, ZHANG Yuting, et al. Design of detection system of parts products based on machine vision[J]. Industrial Control Computer, 2017,30(1):21-22.
[4] 陈令刚. 圆形目标识别方法研究[D]. 淮南: 安徽理工大学, 2018: 2-3.
CHEN Linggang. Research on circular target recognition method[D]. Huainan: Anhui University of Science and Technology, 2018: 2-3.
[5] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man & Cybernetics, 1979,9(1):62-66.
[6] ITTI L, KOCH C. Computational modelling of visual attention[J]. Nature Reviews Neuroscience, 2001,2(3):194.
[7] HOU X D, ZHANG L Q. Saliency detection: a spectral residual approach[C]// Institute of electrical and electronics engineers proceedings of IEEE conference on computer vision and pattern recognition. Minneapolis: IEEE Compututer Society Press, 2007: 1-8.
[8] HAREL J, KOCH C, PERONA P. Graph-based visual saliency[C]// Proceedings of addvances in neural information processing systems. Columbia: Computer Science Bibliography, 2006: 545-552.
[9] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012,34(11):2274-2282.
pmid: 22641706
[10] ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]// 2009 IEEE conference on computer vision and pattern recognition. Miami: IEEE Computer Society, 2009: 1597-1604.
[11] 徐启永, 胡峰, 王传桐, 等. 改进频率调谐显著算法在疵点图像分割中的应用[J]. 纺织学报, 2018,39(5):130-136.
XU Qiyong, HU Feng, WANG Chuantong, et al. Segmentation of fabric defect images based on improved frequency-tuned salient algorithm[J]. Journal of Textile Research, 2018,39(5):130-136.
[12] 易三莉, 张桂芳, 贺建峰, 等. 基于最大类间方差的最大熵图像分割[J]. 计算机工程与科学, 2018,40(10):162-169.
YI Sanli, ZHANG Guifang, HE Jianfeng, et al. Maximum entropy image segmentation based on maximum interclass variance[J]. Computer Engineering & Science, 2018,40(10):162-169.
[1] 周其洪, 孙宝通, 岑均豪, 占齐宸. 采用激光扫描建模的筒子纱卷绕密度测量方法[J]. 纺织学报, 2021, 42(01): 96-102.
[2] 朱世根, 杨宏贤, 白云峰, 丁浩, 朱巧莲. 长条状细薄带钩零件变形自动检测系统[J]. 纺织学报, 2020, 41(10): 158-163.
[3] 周文明, 周建, 潘如如. 应用上下文视觉显著性的色织物疵点检测[J]. 纺织学报, 2020, 41(08): 39-44.
[4] 彭来湖, 祝孝裕, 张少民, 胡旭东. 筒子纱包装自动配重方法研究[J]. 纺织学报, 2020, 41(06): 147-152.
[5] 张建新, 李琦. 基于机器视觉的筒子纱密度在线检测系统[J]. 纺织学报, 2020, 41(06): 141-146.
[6] 路浩, 陈原. 基于机器视觉的碳纤维预浸料表面缺陷检测方法[J]. 纺织学报, 2020, 41(04): 51-57.
[7] 金守峰, 林强强, 马秋瑞, 张浩. 基于BP 神经网络的织物表面绒毛质量的检测方法[J]. 纺织学报, 2020, 41(02): 69-76.
[8] 景军锋, 张君扬, 张缓缓, 苏泽斌. 梯度空间下的丝饼表面缺陷检测[J]. 纺织学报, 2020, 41(02): 44-51.
[9] 孙卫红, 阮棉奖, 邵铁锋, 梁曼. 基于机器视觉的生丝抱合性能检测方法[J]. 纺织学报, 2019, 40(08): 164-168.
[10] 吴传彬, 刘骊, 付晓东, 刘利军, 黄青松. 结合显著区域检测和手绘草图的服装图像检索[J]. 纺织学报, 2019, 40(07): 174-181.
[11] 王文帝, 辛斌杰, 邓娜, 李佳平, 刘宁娟. 单一视角下自适应阈值法的纱线毛羽识别及其应用[J]. 纺织学报, 2019, 40(05): 150-156.
[12] 景军锋, 张星星. 基于机器视觉的玻璃纤维管纱毛羽检测[J]. 纺织学报, 2019, 40(05): 157-162.
[13] 蔡逸超, 周晓, 宋明峰, 牟新刚. 应用多尺度多方向模板卷积的筒子纱缺陷检测[J]. 纺织学报, 2019, 40(04): 152-157.
[14] 徐洋, 朱治潮, 盛晓伟, 余智祺, 孙以泽. 基于机器视觉的鞋面特征点自动识别改进方法[J]. 纺织学报, 2019, 40(03): 168-174.
[15] 杜帅, 李岳阳, 王孟涛, 罗海驰, 蒋高明. 基于改进局部自适应对比法的织物疵点检测[J]. 纺织学报, 2019, 40(02): 38-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!