纺织学报 ›› 2020, Vol. 41 ›› Issue (03): 68-77.doi: 10.13475/j.fzxb.20190602610

• 纺织工程 • 上一篇    下一篇

三维机织复合材料板簧式起落架结构设计及其有限元分析

王翔华1, 成玲1(), 张一帆1, 彭海锋2, 黄志文2, 刘晓志2   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.中国直升机设计研究所, 江西 景德镇 333001
  • 收稿日期:2019-06-12 修回日期:2019-12-09 出版日期:2020-03-15 发布日期:2020-03-27
  • 通讯作者: 成玲
  • 作者简介:王翔华(1993—),男,硕士生。主要研究方向为纺织复合材料结构及力学性能。
  • 基金资助:
    天津市高等学校创新团队培养计划项目(TD13-5043);天津市科技计划项目(18ZXJMTG00190)

Structural design and finite element analysis of landing gearwith leaf spring made of 3-D woven composite

WANG Xianghua1, CHENG Ling1(), ZHANG Yifan1, PENG Haifeng2, HUANG Zhiwen2, LIU Xiaozhi2   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. China Helicopter Research and Development Institute, Jingdezhen, Jiangxi 333001, China
  • Received:2019-06-12 Revised:2019-12-09 Online:2020-03-15 Published:2020-03-27
  • Contact: CHENG Ling

摘要:

为实现直升机板簧式起落架减重和提高层间剪切性能,采用碳纤维三维机织结构整体制备复合材料起落架。针对起落架的设计要求,通过受力分析和理论计算,建立了板簧式起落架的三维力学分析模型;通过材料实验和理论计算,获得了有限元计算所需的材料工程常数;结合最大应力-应变准则,采用有限元方法对板簧进行准静态加载模拟,确定了板簧的截面和轴线几何形状,以及变截面增厚部位的长度值与厚度值。结果表明:基于斜纹2.5维机织复合材料结构,截面宽度为120 mm,厚度为24 mm的弓式圆弧形、矩形截面板簧在满足挠度的同时其应变小于材料许用应变值;基于优选截面,增厚长度为760 mm,增厚厚度为36 mm时,复合材料起落架不仅能较好满足挠度、强度等设计要求,而且在同类型航空用4340钢制成的板簧结构件基础上质量减少约30%。

关键词: 三维机织复合材料, 板簧式起落架, 结构力学, 碳纤维

Abstract:

In order to achieve the weight reduction of the helicopter leaf spring landing gear and improve the inter-layer shear performance, a carbon fiber 3-D woven structure was adopted to prepare integrally the composite landing gear. According to the design requirements of the landing gear, the 3-D mechanical analysis model of the leaf spring landing gear was established by force analysis and theoretical calculation. Through the material experiment and theoretical calculation, the material engineering constants required for the finite element calculation were obtained. Combined with the maximum stress-strain criterion, the finite element method was used to simulate the quasi-static loading of the leaf spring, the leaf spring section and axis geometry, and the length and thickness values of the variable cross-section. The results show that based on the twill 2.5-D woven composite structure, the circular arc-shaped and rectangular-section leaf spring with a section width of 120 mm and a thickness of 24 mm meets the deflection requirement while the strain is less than the allowable strain value of the material. Based on the preferred cross-section, when the thickening length is 760 mm and the thickening thickness is 36 mm, the composite landing gear not only can meet the design requirements of deflection and strength, but also the weight loss reached about 30% compared to the spring structure of 4340 steel currently used for aviation applications.

Key words: 3-D woven composite, leaf spring landing gear, structural mechanics, carbon fiber

中图分类号: 

  • TB332

图1

起落架基本结构图"

图2

板簧受力简化模型"

表1

板簧在不同工况下载荷情况"

飞机姿态 垂向载荷
Fy/N
水平载荷
Fz/N
机轮水平下沉着陆 9 561.5 0
机轮水平滑行 5 671.2 5 882.7

图3

悬臂梁的弯曲变形"

图4

斜纹2.5维机织结构"

表2

三维机织复合材料组分材料性能参数"

参数 TG800-6K碳纤维 5284环氧树脂
密度/(g·cm-3) 1.79 1.21
延伸率/% 2.25 4.5
抗拉强度/MPa 5 490 50
ER/GPa 294 3.13
弹性模量 ET/GPa 15
EQ/GPa 15
GRT/GPa 24 1.19
剪切模量 GTQ/GPa 5.27
GRQ/GPa 24
νRT 0.3 0.32
泊松比 νTQ 0.42
νRQ 0.3

表3

三维机织复合材料弹性工程常数"

弹性工程常数 实验测试值 理论计算值
E11/GPa 68.09 70.12
弹性模量 E22/GPa 23.31 24.89
E33/GPa 9.32
G12/GPa 13.21
剪切模量 G23/GPa 8.28
G13/GPa 12.14
ν12 0.42 0.35
泊松比 ν23 0.41
ν13 0.33

图5

三维板簧的局部材料属性方向 注:1、2、3方向分别代表局部三维机织复合材料的衬经纱、纬纱和法向纱方向。"

表4

同截面条件下板簧弯曲构型性能对比"

弯曲
形状
挠度/
mm
应变 应力/MPa
1向 2向 12向 1向 2向 12向
直线形 128.3 8 127 4 873 8 735 786.3 139.1 122.4
圆弧形 119.4 7 428 4 171 8 387 641.3 102.7 115.2

图6

不同截面的三维板簧变形应力云图"

图7

增厚长度情况下板簧力学性能曲线"

图8

增厚厚度情况下板簧力学性能曲线"

图9

板簧局部区域应力云图"

图10

不同厚度值下板簧应力云图"

[1] GOYAL A, RAMAIAH M S. Light aircraft main landing gear design and development[J]. School of Advanced Studies, 2002,38(2):25-34.
[2] 戴蓓. 某无人机起落架改型设计[D]. 南京:南京航空航天大学, 2016: 1-23.
DAI Bei. A modified design of a drone landing gear[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 1-23.
[3] MA W Y, SUN H. Analysis of UAV main landing gear loads during wheel spin-up process[J]. Advanced Materials Research, 2013,753(2):1595-1598.
[4] 孙艳坤, 张威. 民机起落架用材料的发展与研究现状[J]. 热加工工艺, 2018,47(20):22-29.
SUN Yankun, ZHANG Wei. Development and research status of materials for civil aircraft landing gear[J]. Thermal Processing Technology, 2018,47(20):22-29.
[5] 蔡菊生. 先进复合材料在航空航天领域的应用[J]. 合成材料老化与应用, 2018,47(6):94-97.
CAI Jusheng. The application of advanced composite materials in the aerospace field[J]. Ageing and Application of Synthetic Materials, 2018,47(6):94-97.
[6] MURALI K S, MOHAMED R. Structural analysis of landing strut made up of carbon fibre composite material[J]. International Journal of Mechanical and Production Engineering, 2014,1(1):2320-2092.
[7] RASHIDI A, MILANI A S. Finite element analysis of a composite landing gear and effect of runway material[D]. Canada: CSME, 2016: 26-29.
[8] 杨晓, 聂宏, 魏小辉. 某型复合材料扁簧式起落架落震性能研究[J]. 航空计算技术, 2018,48(3):107-110.
YANG Xiao, NIE Hong, WEI Xiaohui. Research on the drop performance of a composite flat-type landing gear[J]. Aeronautical Computing Technology, 2018,48(3):107-110.
[9] 王一博, 刘振国, 胡龙, 等. 三维编织复合材料研究现状及在航空航天中应用[J]. 航空制造技术, 2017(19):78-85.
WANG Yibo, LIU Zhenguo, HU Long, et al. Research status of three-dimensional braided composite materials and its application in aerospace[J]. Aviation Manufacturing Technology, 2017(19):78-85.
[10] ZHENG M Y, HE J W, XIONG Y X. Design and analysis of universal multifunctional leaf spring main landing gear for light aircraft[J]. Engineering and Technology Aerospace and Mechanical Engineering, 2017,11(10):1658-1663.
[11] 刘毅, 张元明, 徐红炉. 基于能量法的无人机弓形起落架优化设计[J]. 航空计算技术, 2013,43(2):76-79.
LIU Yi, ZHANG Yuanming, XU Honglu. Optimization design of bow landing gear for UAV based on energy method[J]. Aeronautical Computing Technology, 2013,43(2):76-79.
[12] 段汉波, 朱伟. 航空复合材料板簧式缓冲件结构设计[J]. 机电工程技术, 2011,40(2):57-60.
DUAN Hanbo, ZHU Wei. Aerospace composite material spring spring cushion structure design[J]. Mechanical and Electrical Engineering Technology, 2011,40(2):57-60.
[13] 王力, 谢辉, 张琳. 板簧式起落架满应力设计方法研究[J]. 机械研究与应用, 2015,28(5):22-25.
WANG Li, XIE Hui, ZHANG Lin. Research on design method of full stress of leaf spring type landing gear[J]. Mechanical Research and Applications, 2015,28(5):22-25.
[14] 杨民献. 工程力学[M]. 北京: 北京大学出版社, 2013: 201-253.
YANG Minxian. Engineering Mechanics [M]. Beijing: Peking University Press, 2013: 201-253.
[15] 胡松, 祖磊, 李书欣. 复合材料无人机滑撬式起落架设计与优化[J]. 玻璃钢/复合材料, 2018(3):26-32.
HU Song, ZU Lei, LI Shuxin. Design and optimization of composite drone sliding type landing gear[J]. FRP/Composite, 2018(3):26-32.
[16] 冯兆行, 田伟, 马雷雷, 等. 三维机织正交结构复合材料的参数化设计[J]. 纺织学报, 2010,31(12):59-63.
FENG Zhaoxing, TIAN Wei, MA Leilei, et al. Parametric design of 3D woven orthogonal structural composites[J]. Journal of Textile Research, 2010,31(12):59-63.
[17] 卢子兴, 周原. 2.5D机织复合材料压缩性能实验与数值模拟[J] 复合材料学报, 2015,32(1):150-159.
LU Zixing, ZHOU Yuan. Experimental and numerical simulation of compressive properties of 2.5D woven composites[J]. Journal of Composite Materials, 2015,32(1):150-159.
[18] CHAMIS C C. Mechanics of composites materials:past, present future[J]. Journal of Composites Techology and Research, 1989,11:3-14.
[19] 杨彩云. 三维角联锁结构复合材料的力学性能研究[D]. 天津:天津工业大学, 2005: 14-42.
YANG Caiyun. Study on mechanical properties of 3D angular interlocking composites[D]. Tianjin: Tianjin Polytechnic University, 2005: 14-42.
[20] 马倩, 王可, 金利民, 等. 三维角联锁机织复合材料的冲击破坏有限元模拟分析[J]. 纺织学报, 2017,38(7):63-68.
MA Qian, WANG Ke, JIN Limin, et al. Finite element simulation analysis of impact failure of three-dimensional angular interlocking woven composites[J]. Journal of Textile Research, 2017,38(7):63-68.
[21] BRANIMIR K, LAMINE R A. Investigation into recurring military helicopter landing gear failure[J]. Engineering Failure Analysis, 2016,23(63):121-130.
[22] 徐晓晨, 刘波, 贾宏光. 冲击载荷下复合材料板簧式起落架动强度研究[J]. 机械强度, 2013,35(5):571-576.
XU Xiaochen, LIU Bo, JIA Hongguang, et al. Research on dynamic strength of composite leaf spring landing gear under impact load[J]. Mechanical Strength, 2013,35(5):571-576.
[23] 董红坤, 贺辛亥, 钟鹏, 等. 三维机织物织边造型工艺设计[J]. 纺织学报, 2017,38(4):50-54.
DONG Hongkun, HE Xinhai, ZHONG Peng, et al. Design of three-dimensional woven fabric weaving edge modeling[J]. Journal of Textile Research, 2017,38(4):50-54.
[24] 刘文斌. 基于有限元法的无人机起落架静力分析和结构优化[D]. 南京:南京航空航天大学, 2014: 2-18.
LIU Wenbin. Static analysis and structural optimization of UAV landing gear based on finite element method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 2-18.
[25] 何绪飞, 艾剑良, 宋智桃. 民机起落架摆振仿真与虚拟适航验证[J]. 机械工程学报, 2018,54(14):179-184.
HE Xufei, AI Jianliang, SONG Zhitao. Vibration simulation and virtual airworthiness verification of civil aircraft landing gear[J]. Journal of Mechanical Engineering, 2018,54(14):179-184.
[26] 晋萍, 聂宏. 起落架着陆动态仿真分析模型及参数优化设计[J]. 南京航空航天大学学报, 2003,35(5):498-502.
JIN Ping, NIE Hong. Dynamic simulation analysis model and parameter optimization design of landing gear landing[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2003,35(5):498-502.
[1] 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121.
[2] 沈岳, 蒋高明, 刘其霞. 梯度结构活性碳纤维毡吸声性能分析[J]. 纺织学报, 2020, 41(10): 29-33.
[3] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[4] 马莹, 何田田, 陈翔, 禄盛, 王友棋. 基于数字单元法的三维正交织物微观几何结构建模[J]. 纺织学报, 2020, 41(07): 59-66.
[5] 戴鑫, 李晶, 陈晨. 镀铜碳纤维丝束细观耐磨性的有限元仿真模拟[J]. 纺织学报, 2020, 41(06): 27-35.
[6] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[7] 路浩, 陈原. 基于机器视觉的碳纤维预浸料表面缺陷检测方法[J]. 纺织学报, 2020, 41(04): 51-57.
[8] 赵亚奇, 郭雯静, 杜玲枝, 赵振新, 赵海鹏. 自由基引发剂制备高相对分子质量聚丙烯腈研究进展[J]. 纺织学报, 2020, 41(04): 174-180.
[9] 董科, 李思明, 吴官正, 黄虹蓉, 林钟石, 肖学良. 碳纤维/ 涤纶刺绣心电电极制备及其性能 [J]. 纺织学报, 2020, 41(01): 56-62.
[10] 刘俊岭, 孙颖, 陈利. 含变异结构的三维机织复合材料的轴向拉伸性能[J]. 纺织学报, 2019, 40(12): 162-168.
[11] 张泽, 徐卫军, 康宏亮, 徐坚, 刘瑞刚. 高性能聚丙烯腈基碳纤维制备技术几点思考[J]. 纺织学报, 2019, 40(12): 152-161.
[12] 李树锋, 程博闻, 罗永莎, 王辉, 徐经伟. 聚丙烯腈基活性中空碳纳米纤维制备及其性能[J]. 纺织学报, 2019, 40(10): 1-6.
[13] 阮芳涛, 施建, 徐珍珍, 邢剑. 碳纤维增强树脂基复合材料的回收及其再利用研究进展[J]. 纺织学报, 2019, 40(06): 152-157.
[14] 郑振荣, 智伟, 韩晨晨, 赵晓明, 裴晓园. 碳纤维织物在热流冲击下的热传递数值模拟[J]. 纺织学报, 2019, 40(06): 38-43.
[15] 陈悦, 赵永欢, 褚朱丹, 庄志山, 邱琳琳, 杜平凡. 基于碳纤维及其织物的柔性锂电池电极研究进展[J]. 纺织学报, 2019, 40(02): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!