纺织学报 ›› 2020, Vol. 41 ›› Issue (03): 106-112.doi: 10.13475/j.fzxb.20190506107

• 染整与化学品 • 上一篇    下一篇

剪切增稠液对不同结构芳纶织物防刺性能的影响

李聃阳1,2, 王瑞1,2(), 刘星1,2, 张淑洁1,2, 夏兆鹏1,2, 阎若思3, 代二庆4   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 先进纺织复合材料 教育部重点实验室, 天津 300387
    3.河北科技大学 纺织服装学院, 河北 石家庄 050018
    4.中国人民武装警察部队特色医学中心, 天津 300162
  • 收稿日期:2019-05-24 修回日期:2019-12-14 出版日期:2020-03-15 发布日期:2020-03-27
  • 通讯作者: 王瑞
  • 作者简介:李聃阳(1993—),女,博士生。主要研究方向为剪切增稠液及防刺材料。
  • 基金资助:
    国家自然科学基金青年基金项目(11602168);天津市科委重点课题(15ZXLCSY00040);河北省自然科学基金项目(E2019208424)

Effect of shear thickening fluid on quasi-static stab resistance of aramid-based soft armor materials

LI Danyang1,2, WANG Rui1,2(), LIU Xing1,2, ZHANG Shujie1,2, XIA Zhaopeng1,2, YAN Ruosi3, DAI Erqing4   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
    3. College of Textile and Garments, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
    4. Affiliated Hospital of Logistics University of People's Armed Police Force, Tianjin 300162, China
  • Received:2019-05-24 Revised:2019-12-14 Online:2020-03-15 Published:2020-03-27
  • Contact: WANG Rui

摘要:

为实现防刺服的轻量化以提高可穿戴性,用剪切增稠液 (STF) 浸渍不同结构的芳纶织物制备柔性防刺材料,探究织物结构对STF/芳纶复合织物防刺性能的影响。借助流变仪、扫描电子显微镜、万能强力仪对STF的流变性及STF/芳纶复合织物的形貌、纱线抽拔力、准静态锥刺和刀刺性能进行表征。结果表明:STF的流变性能随着分散相质量分数的增加而明显增强;经STF浸渍后各织物的防刺性能都有明显提升,经纬密度较大的平纹织物表现出较优的抗锥和抗刀刺性能,其中最大抗锥刺和抗刀刺力分别为993.75 N和687.50 N;STF的剪切增稠作用能有效提高纤维间的摩擦从而限制纱线滑移,且随着织物交织点数增多,纱线间摩擦力增大;斜纹复合织物的刀刺性能提升最为明显,提升了387%,因为斜纹织物较长的浮长线能有效抵抗刀刃的切割作用。

关键词: 剪切增稠液, 芳纶织物, 织物结构, 防刺性能, 个体防护材料

Abstract:

In order to achieve the lightweight of stab-resistance fabric with improved wearability, shear thickening fluid (STF) was used to impregnate the aramid fabrics with different structures to fabricate the flexible body armor and the influence of different structures on the stab resistance of STF/aramid fabrics was investigated. The rheological property of STF, the morphology, yarn pull-out force and spike and knife stabbing performance of STF/aramid fabrics were characterized by Malvin rotational rheometer, scanning electron microscopy and tensile tester. The results indicate that the shear thickening behavior increases with the mass fraction of dispersion phase increasing. The STF impregnated fabric has significantly improved the stab resistance performance, and the STF/plain-fabric with high warp and weft density exhibits better spike and knife stab performance with the maximum spike and knife stab resistance forces reaching 993.75 N and 687.50 N respectively. Because the shear thickening effect can effectively hinder yarn slippage and the yarn friction increases as the number of fabric crossover points increasing. Moreover, the knife stab performance of STF/twill-fabric is most noticeably enhanced by 387% because the longer floating line can resist the cutting action of the knife blade.

Key words: shear thickening fluid, aramid fabric, fabric structure, stab-resistance, personal protective material

中图分类号: 

  • TB332

图1

织物组织结构"

表1

织物的规格参数"

织物
编号
组织
结构
密度/(根·(10 cm)-1) 面密度/
(g·m-2)
经向 纬向
1# 平纹 56 56 120
2# 平纹 87 87 200
3# 斜纹 87 87 200

图2

纱线抽拔测试示意图"

图3

锥和刀规格图和实物图"

图4

准静态防刺测试示意图"

图5

不同质量分数SiO2的STF静态流变性能曲线"

图6

纯芳纶和STF/芳纶复合织物表面SEM照片 (×2 000)"

图7

纯芳纶和STF/芳纶复合织物截面SEM照片(×200)"

图8

纱线最大抽拔力和STF浸渍后织物的质量增加率"

图9

纯芳纶和STF/芳纶复合织物的抗锥刺性能"

图10

纯芳纶和STF/芳纶复合织物锥刺后破损图"

图11

纯芳纶和STF/芳纶复合织物的抗刀刺性能"

图12

纯芳纶和STF/芳纶复合织物刀刺后破损图"

[1] 邢京京, 钱晓明. 织物的防刺机制及刀具形状对防刺性能的影响[J]. 纺织学报, 2017,38(8):55-61.
XING Jingjing, QIAN Xiaoming. Stab-resistnt mechanism of fabrics and influence of cutter shape on stab resistance[J]. Jouranl of Textile Research, 2017,38(8):55-61.
[2] HASANZADEH M, MOTTAGHITALAB V, BABAEI H, et al. The influence of carbon nanotubes on quasi-static puncture resistance and yarn pull-out behavior of shear-thickening fluids (STFs) impregnated woven fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2016,88:263-271.
[3] LAHA A, MAJUMDAR A. Shear thickening fluids using silica-halloysite nanotubes to improve the impact resistance of p-aramid fabrics[J]. Applied Clay Science, 2016, 132-133:468-474.
[4] GÜRGEN S, KUSHAN M C, LI W H. Shear thickening fluids in protective applications: a review[J]. Prog Polym Sci, 2017,75:48-72.
[5] LEE Y S, WETZEL E D, WAGNER N J. The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid[J]. Journal of Materials Science, 2003,38(13):2825-2833.
[6] XU Yue, CHEN Xiaogang, WANG Yan, et al. Stabbing resistance of body armour panels impregnated with shear thickening fluid[J]. Composite Structures, 2017,163:465-473.
[7] GÜRGEN S, KUŞHAN M C. The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives[J]. Composites Part A: Applied Science and Manufacturing, 2017,94:50-60.
[8] FENG Xinya, LI Shukui, WANG Yan, et al. Effects of different silica particles on quasi-static stab resistant properties of fabrics impregnated with shear thickening fluids[J]. Materials & Design, 2014,64(9):456-461.
[9] KALMAN D P, MERRILL R L, WAGNER N J, et al. Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle-fluid suspensions[J]. ACS Applied Materials & Interfaces, 2009,1(11):2602-2612.
pmid: 20356133
[10] ANTOSIK A, GLUSZEK M, ZUROWSKI R, et al. Influence of carrier fluid on the electrokinetic and rheological properties of shear thickening fluids[J]. Ceramics International, 2017,43(15):12293-12301.
doi: 10.1016/j.ceramint.2017.06.092
[11] LI Danyang, WANG Rui, LIU Xing, et al. Shear-thickening fluid using oxygen-plasma-modified multi-walled carbon nanotubes to improve the quasi-static stab resistance of Kevlar fabrics[J]. Polymers, 2018,10(12):1-13
doi: 10.3390/polym10010001
[12] BRADY J F, BOSSIS G. The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation[J]. Journal of Fluid Mechanics, 2006,155:105-129.
[13] CHENG Xiang, MCCOY J H, ISRAELACHVILI J N, et al. Imaging the microscopic structure of shear thinning and thickening colloidal suspensions[J]. Science, 2011,333(6047):1276-1279.
doi: 10.1126/science.1208085 pmid: 21885778
[14] 陆振乾, 许玥. 剪切增稠液浸渍超高分子量聚乙烯织物的防锥刺性能[J]. 纺织学报, 2018,39(10):63-67,72.
LU Zhenqian, XU Yue. Study on stab-resistant performance of shear thickening fluids impregnated ultra-high-molecular-weight polyethylene fabric[J]. Journal of Textile Research, 2018,39(10):63-67,72.
[15] 赵金华, 曹海琳, 李霞, 等. SiO2粉体粒径对STF/Kevlar复合材料防刺性能的影响[J]. 复合材料学报, 2012,29(1):54-61.
ZHAO Jinhua, CAO Hailin, LI Xia, et al. Effect of SiO2 particle size on stab resistant properties of STF/Kevlar composites[J]. Acta Meteriae Compositae Sinica, 2012,29(1):54-61.
[16] TAPIE E, SHIM V P W, GUO Y B. Influence of weaving on the mechanical response of aramid yarns subjected to high-speed loading[J]. International Journal of Impact Engineering, 2015,80:1-12.
[1] 吕庆涛, 赵世波, 杜培健, 陈利. 树脂基纺织复合材料疲劳性能表征与分析方法研究现状[J]. 纺织学报, 2021, 42(01): 181-189.
[2] 陈洁如, 邱诗苑, 杨青青, 周熠. 基于可调张力装置的芳纶织物交织阻力研究[J]. 纺织学报, 2021, 42(01): 67-72.
[3] 李美真, 赵士毅, 冯艳丽, 郭晓卿, 于晓庆. F-12 芳纶织物输送带的制备及其性能[J]. 纺织学报, 2020, 41(12): 87-93.
[4] 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(07): 67-71.
[5] 陈立富, 于伟东. 人造金刚石填充聚酰亚胺树脂基复合材料防刺性能[J]. 纺织学报, 2020, 41(05): 38-44.
[6] 张爱丹, 周赳. 基于图像色网点化设计的织物结构呈色特征[J]. 纺织学报, 2019, 40(09): 56-61.
[7] 王新厚, 张琳梅, 孙晓霞. 柔性防刺涤纶/碳化硅织物的制备及其防刺性能[J]. 纺织学报, 2019, 40(06): 171-175.
[8] 杨婉秋, 刘晓艳, 于伟东. 多层防刺材料中间隔织物的缓冲作用[J]. 纺织学报, 2019, 40(04): 51-54.
[9] 陆振乾 许玥. 剪切增稠液浸渍超高分子量聚乙烯织物的防锥刺性能[J]. 纺织学报, 2018, 39(10): 58-62.
[10] 张爱丹 周赳. 全显技术组织对三纬组合织物结构混色规律的影响[J]. 纺织学报, 2018, 39(10): 44-49.
[11] 张爱丹 周赳. 一纬全显织物结构设计要素与其显色规律的关系[J]. 纺织学报, 2017, 38(09): 40-44.
[12] 邢京京 钱晓明. 织物的防刺机制及刀具形状对防刺性能的影响[J]. 纺织学报, 2017, 38(08): 55-61.
[13] 吕叶馨 杜磊 邹奉元. 香味织物颜色及结构对味感的影响[J]. 纺织学报, 2015, 36(12): 85-91.
[14] 袁会锦 张辉 谢光银. 织物结构对纺织结构电极阻抗性能的影响[J]. 纺织学报, 2015, 36(09): 44-49.
[15] 雷惠 丛洪莲 楚玉松. 织物结构对毛衫保暖性能的影响[J]. 纺织学报, 2014, 35(2): 34-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!