纺织学报 ›› 2020, Vol. 41 ›› Issue (04): 26-32.doi: 10.13475/j.fzxb.20190404307

• 纤维材料 • 上一篇    下一篇

天然中空异形萝藦种毛纤维的吸油性能

王邓峰, 王宗乾(), 范祥雨, 宋波, 李禹   

  1. 安徽工程大学 纺织服装学院, 安徽 芜湖 241000
  • 收稿日期:2019-04-15 修回日期:2020-01-13 出版日期:2020-04-15 发布日期:2020-04-27
  • 通讯作者: 王宗乾
  • 作者简介:王邓峰(1994—),男,硕士生。主要研究方向为天然吸附材料的开发与应用。
  • 基金资助:
    安徽省重点研究与开发计划项目(1804a09020077);芜湖市科技计划项目(2017yf14);芜湖市科技计划项目(2017yf33);大学生创新创业计划项目(201810363171)

Study on oil absorbency of nature hollow metaplexis japonica seed hair fibers

WANG Dengfeng, WANG Zongqian(), FAN Xiangyu, SONG Bo, LI Yu   

  1. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
  • Received:2019-04-15 Revised:2020-01-13 Online:2020-04-15 Published:2020-04-27
  • Contact: WANG Zongqian

摘要:

为探究萝藦种毛纤维在吸油领域的应用潜力,实现纤维的高值化利用,采用光学接触角测量仪测量了水及不同油剂在萝藦种毛纤维表面的静态接触角;利用纤维成像系统对比观察了吸油前后及重复吸油后纤维的形貌变化;同时分析了其对不同油剂的静态吸油、保油及重复吸油性能,并以该纤维为过滤层初步分析其对油水混合物的分离性能。结果表明:萝藦种毛纤维具有优异亲油疏水性,与纯水的静态接触角为151.12°;因纤维间隙及中空结构的吸油储油作用,其对植物油、机油和柴油具有较高的饱和吸油倍率,分别为81.52、77.62和57.22 g/g;经 12 h 重力沥干,保油率仍可达到79.1%、75.4%和72.0%;经8次循环使用后,纤维的吸油倍率分别下降了23.4%、22.2%和20.7%;经4次过滤后,纤维对植物油的分离效率达98.0%,可初步实现油水分离。

关键词: 萝藦种毛纤维, 吸油性能, 油水分离, 中空结构, 异形纤维

Abstract:

This research was carried out with the purpose of exploring the application of the metaplexis japonica seed hair fibers (Mj-fibers) in oil absorption and to realize high-value utilization of the fibers. Static contact angles of different liquids on the surface of fibers were measured by a contact angle-measuring instrument. The morphological characteristics of the fibers before and after oil absorption and the morphological changes after repeated oil absorption were observed and compared using the fiber imaging system. Static oil absorbency, oil retention performance and reusability of Mj-fibers to different oil agents were analyzed, and the fibers was involved as the filter layer making use of its separation function for oil/water mixture. The results show that Mj-fibers possess excellent lipophilic and hydrophobic properties, and the static contact angle of pure water on the surface of the fiber is measured to be 151.12°. Due to the oil absorption and oil storage between the fibers and in the hollowness of the fibres, the saturated oil absorption ratios for absorbing vegetable oil, lubricant oil and diesel are found to be 81.52, 77.62 and 57.22 g/g, respectively. The oil retention rates with these types of oil still reach 79.1%, 75.4% and 72.0% after 12 h gravity leaching. After 8 cycles, the oil absorption rate for these three types of oil demonstrated decrease by 23.4%, 22.2% and 20.7% respectively. In addition, After 4 times of filtration, the separation efficiency of the Mj-fibers for vegetable oil reaches 98.0%, ensuring initial oil/water separation.

Key words: metaplexis japonica seed hair fiber, oil absorption, oil/water separation, hollow structure, profiled fiber

中图分类号: 

  • TS102.2

表1

实验油剂特征参数"

油剂
名称
密度/
(g·cm-3)
黏度/
(mPa·s)
表面能/
(J·m-2)
植物油 0.92 62.81 33.48×10-3
机油 0.84 31.36 31.22×10-3
柴油 0.83 6.50 27.76×10-3

图1

萝藦种毛纤维扫描电镜照片"

图2

萝藦种毛纤维表面润湿性"

图3

萝藦种毛纤维对不同油剂的静态吸附性能"

图4

萝藦种毛纤维对不同油剂的保油性"

图5

萝藦种毛纤维吸油状态下的光学显微镜照片(×80)"

图6

萝藦种毛纤维对不同油剂的重复吸油性能"

图7

萝藦种毛纤维重复使用后纤维集合体形态(×40)"

图8

萝藦种毛纤维油水分离图"

表2

不同分离循环次数下萝藦种毛纤维的油水分离效率"

油水分离循环次数 油相分离效率/%
1 85.2
2 93.0
3 97.8
4 98.0
[1] WANG D C, SUN S H, SHI L N, et al. Chemical composition, antibacterial and antioxidant activity of the essential oils of metaplexis japonica and their antibacterial components[J]. International Journal of Food Science & Technology, 2015,50(2):449-457.
[2] JAMARKATTEL-PANDIT N, KIM H. Neuroprotective effects of metaplexis japonica against in vitro ischemia model[J]. Journal of Health and Allied Sciences, 2013,3(1):51-55.
[3] YAO H L, LIU Y, LIU X H, et al. Metajapogenins A-C, pregnane steroids from shells of metaplexis japo-nica[J]. Molecules, 2017.DOI: 10.3390/molecules22040646.
[4] WANG Z, WANG D, WANG M, et al. Metaplexis japonica seed hair fiber: a member of natural hollow fibers and its characterization[J]. Textile Research Journal, 2019,89(21/22):4363-4372.
[5] WANG J, ZHENG Y, WANG A. Effect of kapok fiber treated with various solvents on oil absorbency[J]. Industrial Crops and Products, 2012,40(6):178-184.
[6] HORI K, FLAVIER M E, KUGA S, et al. Excellent oil absorbent kapok [Ceiba pentandra (L.) Gaertn.] fiber: fiber structure, chemical characteristics, and applica-tion[J]. Journal of Wood Science, 2000,46(5):401-404.
[7] ABDULLAH M A, RAHMAH A U, MAN Z. Physicochemical and sorption characteristics of Malaysian Ceiba pentandra (L.) Gaertn. as a natural oil sorbent[J]. Journal of Hazardous Materials, 2010,177(1-3):683-691.
[8] HUSSEIN M, AMERR A A, SAWSAN I I. Heavy oil spill cleanup using law grade raw cotton fibers: trial for practical application[J]. Journal of Petroleum Technology and Alternative Fuels, 2011,2(8):132-140.
[9] 陈莉, 邹龙, 孙卫国. 废弃亚麻热解处理吸油材料的制备及其吸附性能[J]. 纺织学报, 2017,38(6):17-22.
CHEN Li, ZOU Long, SUN Weiguo. Preparation and oil adsorption property of thermal-modified waste flax fibers[J]. Journal of Textile Research, 2017,38(6):17-22.
[10] RADETIC M M, JOCIC D M, JOVANCIC P M, et al. Recycled wool-based nonwoven material as an oil sorbent[J]. Environmental Science & Technology, 2003,37(5):1008-1012.
doi: 10.1021/es0201303 pmid: 12666933
[11] 王锦涛, 王爱勤. N-溴代丁二亚酰胺催化制备乙酰化木棉纤维及吸油性能研究[J]. 材料导报, 2015,29(22):39-42.
WANG Jintao, WANG Aiqin. Preparation of acetylated kapok fiber using N-bromosuccinimide as a catalyst and its oil sorption property investigation[J]. Materials Review, 2015,29(22):39-42.
[12] WANG J, ZHENG Y, WANG A. Coated kapok fiber for removal of spilled oil[J]. Marine Pollution Bulletin, 2013,69(1/2):91-96.
[13] CUI Y, XU G, LIU Y. Oil sorption mechanism and capability of cattail fiber assembly[J]. Journal of Industrial Textiles, 2014,43(3):330-337.
[14] DONG T, XU G, WANG F. Oil spill cleanup by structured natural sorbents made from cattail fibers[J]. Industrial Crops and Products, 2015,76:25-33.
[15] CHEN X, LIANG Y N, TANG X Z, et al. Additive-free poly (vinylidene fluoride) aerogel for oil/water separation and rapid oil absorption[J]. Chemical Engineering Journal, 2017,308:18-26.
[16] ZHANG W, ZHAI X, XIANG T, et al. Superhydrophobic melamine sponge with excellent surface selectivity and fire retardancy for oil absorp-tion[J]. Journal of Materials Science, 2017,52(1):73-85.
[17] 刘雷艮, 林振锋, 沈忠安, 等. 静电纺多孔超细纤维膜的吸油性能[J]. 纺织学报, 2018,39(2):7-13.
LIU Leigen, LIN Zhenfeng, SHEN Zhongan, et al. Oil absorption property of electrospun superfine fibrous membrane[J]. Journal of Textile Research, 2018,39(2):7-13.
[18] ZHENG Y, CAO E, TU L, et al. A comparative study for oil-absorbing performance of octadecyltrichlorosilane treated calotropis gigantea fiber and kapok fiber[J]. Cellulose, 2017,24(1/2):1-12.
doi: 10.1007/s10570-016-1105-9
[19] WAHI R, CHUAH L A, CHOONG T S Y, et al. Oil removal from aqueous state by natural fibrous sorbent: an overview[J]. Separation & Purification Technology, 2013,113:51-63.
[20] DONG T, XU G, WANG F. Adsorption and adhesiveness of kapok fiber to different oils[J]. Journal of Hazardous Materials, 2015,296:101-111.
doi: 10.1016/j.jhazmat.2015.03.040 pmid: 25913676
[21] LIANG J, ZHOU Y, JIABNG G, et al. Transformation of hydrophilic cotton fabrics into superhydrophobic surfaces for oil/water separation[J]. Journal of The Textile Institute, 2013,104(3):305-311.
doi: 10.1080/00405000.2012.721207
[22] 江茂生, 黄彪, 蔡向阳, 等. 红麻杆高吸油材料吸油特性的研究[J]. 中国麻业科学, 2007,29(6):344-348.
JIANG Maosheng, HUANG Biao, CAI Xiangyang, et al. Characterization of the oil absorbent from pyrolyzed kenaf cores[J]. Plant Fiber Sciences in China, 2007,29(6):344-348.
[23] ZHANG X, WANG C, CHAI W, et al. Kapok fiber as a natural source for fabrication of oil absorbent[J]. Journal of Chemical Technology & Biotechnology, 2017,92(7):1613-1619.
[24] 阮一平, 历伟, 侯琳熙, 等. 高吸油材料研究进展[J]. 高分子通报, 2013(5):1-8.
RUAN Yiping, LI Wei, HOU Linxi, et al. Research of oil high-absorption materials[J]. Polymer Bulletin, 2013(5):1-8.
[25] CHOI H M, MOREAU J P. Oil sorption behavior of various sorbents studied by sorption capacity measurement and environmental scanning electron microscopy[J]. Microscopy Research & Technique, 1993,25(5/6):447-455.
[26] ABDElWAHAB O. Assessment of raw luffa as a natural hollow oleophilic fibrous sorbent for oil spill cleanup[J]. Alexandria Engineering Journal, 2014,53(1):213-218.
doi: 10.1016/j.aej.2013.11.001
[27] MU L, YANG S, HAO B, et al. Ternary silicone sponge with enhanced mechanical properties for oil-water separation[J]. Polymer Chemistry, 2015,6(32):5869-5875.
doi: 10.1039/C5PY00861A
[28] DONG T, WANG F, XU G. Theoretical and experimental study on the oil sorption behavior of kapok assemblies[J]. Industrial Crops and Products, 2014,61:325-330.
doi: 10.1016/j.indcrop.2014.07.020
[1] 余钰骢, 史晓龙, 刘琳, 姚菊明. 用于油水分离的超润湿性纺织品研究进展[J]. 纺织学报, 2020, 41(11): 189-196.
[2] 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/ 聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26.
[3] 张一敏, 周伟涛, 何建新, 杜姗, 陈香香, 崔世忠. 偕胺肟化SiO2 / 聚丙烯腈复合纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(05): 25-29.
[4] 袁晓雨 李伟 朱振国 张兴祥. 超疏水聚酯滤布的性能及其在油水分离中的应用[J]. 纺织学报, 2017, 38(03): 108-113.
[5] 张光蕾 王祥荣 王晨欢 潘志娟. 纳/微米纤维膜的吸油性及油水分离效果[J]. 纺织学报, 2014, 35(9): 7-0.
[6] 瞿畅, 陈星球, 王君泽, 张小萍, 刘尧逢. Y形纤维截面特征参数的自动测量及分析系统[J]. 纺织学报, 2012, 33(2): 109-114.
[7] 刘尧逢 瞿畅 王君泽. Y形纤维截面异形度的测量方法[J]. 纺织学报, 2011, 32(8): 136-141.
[8] 杨崇倡;冯经明;黄作英;魏蕊;孙瑞玉;王征黎. 异形纤维截面测量中的边缘检测算法[J]. 纺织学报, 2008, 29(6): 11-14.
[9] 赵恒迎. 纱线毛细管当量半径的测试[J]. 纺织学报, 2006, 27(9): 68-70.
[10] 张一平.;许瑞超;陈莉娜. 纤维异形度对织物导湿快干性能的影响[J]. 纺织学报, 2006, 27(12): 70-73.
[11] 程丝;程嘉祺. 异型纤维碱减量及其粘弹性的研究[J]. 纺织学报, 2002, 23(03): 11-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!