纺织学报 ›› 2020, Vol. 41 ›› Issue (04): 51-57.doi: 10.13475/j.fzxb.20190502107
摘要:
针对碳纤维预浸料表面缺陷人工检测方法效率低、成本高、实时性差等问题,提出基于机器视觉的碳纤维预浸料表面缺陷自动检测方法。首先,在碳纤维预浸料生产线上,采用2台高分辨率线扫描相机快速连续采集图像,从中随机选择带有缺陷的图像1 000张;其次,基于大气光散射模型对图像进行去雾增强处理,以消除白色树脂的干扰;然后,改进具有19个卷积层和5个最大值池化层的YOLOv2目标检测算法,用于缺陷的检测;最后,对预处理后的图像进行网络训练提取图像特征,识别图像目标,并对训练好的网络进行实验验证。结果表明:该方法在复杂的工业环境下,具有较高的识别精度和鲁棒性,识别成功率达到94%以上,且每张图像的检测时间不超过 0.1 s,可满足工业生产中精度和实时性要求。
中图分类号:
[1] | 高奇. 新形势下我国碳纤维产业发展探究[J]. 合成纤维工业, 2019,42(5):1-7. |
GAO Qi. Research on the development of China's carbon fiber industry in the new situation[J]. China Synthetic Fiber Industry, 2019,42(5):1-7. | |
[2] | 顾佳杰. 碳纤维产业研究发展报告[J]. 上海化工, 2019,44(3):32-36. |
GU Jiajie. Carbon fiber industry development report[J]. Shanghai Chemical, 2019,44(3):32-36. | |
[3] | 杨玉娥, 张文习. 碳纤维复合材料的无损检测综述[J]. 济南大学学报(自然科学版), 2015,29(6):471-476. |
YANG Yu'e, ZHANG Wenxi. Summary of nondestructive testing of carbon fiber composites[J]. Journal of University of Jinan (Science and Technology), 2015,29(6):471-476. | |
[4] | 倪金辉. 基于机器视觉的预浸纱缺陷检测系统的研究[D]. 南京: 南京航空航天大学, 2015: 1-5. |
NI Jinhui. Defect detection system for prepreg based on machine vision[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 1-5. | |
[5] | 李文羽, 程隆棣. 基于机器视觉和图像处理的织物疵点检测研究新进展[J]. 纺织学报, 2014,35(3):158-164. |
LI Wenyu, CHENG Longdi. New progress in fabric defect detection based on machine vision and image processing[J]. Journal of Textile Reaearch, 2014,35(3):158-164. | |
[6] | 张浩. 基于深度学习的表面缺陷检测方法研究[D]. 苏州: 苏州大学, 2018: 1-3. |
ZHANG Hao. Study on surface defect detection method based on deep learning[D]. Suzhou: Soochow University, 2018: 1-3. | |
[7] | REDMON Joseph, DIVVALA Santosh, GIRSHICK Ross, et al. You look only once: unified, real-time objection detection [C]//2016 IEEE conference on computer vision and pattern recognition(CVPR). Las Vegas: IEEE, 2016: 779-788. |
[8] | REDMON Joseph, FARHADI Ali. YOLO9000: better, faster, stronger [C]//2017 IEEE conference on computer vision and pattern recognition(CVPR). Venice: IEEE, 2017: 1-9. |
[9] | REN Shaoqing, HE Kaiming, GIRSHICK Ross. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149. |
[10] | 牟新刚, 蔡逸超, 周晓, 等. 基于机器视觉的筒子纱缺陷在线检测系统[J]. 纺织学报, 2018,39(1):139-145. |
MOU Xingang, CAI Yichao, ZHOU Xiao, et al. Online yarn cone defects detection system based on machine vision[J]. Journal of Textile Reasearch, 2018,39(1):139-145. | |
[11] | HE Kaiming, SUN Jian, TANG Xiaoou. Single image haze removal using dark channel prior [C]//2009 IEEE conference on computer vision and pattern recogni-tion(CVPR). Miami: IEEE, 2009: 1956-1963. |
[12] | WANG Xuelong, GAO Ying, DONG Junyu. Surface defects detection of paper dish based on Mask R-CNN [C]//Third international workshop on pattern recognition(IWPR). Jinan: Proceeding of Spie, 2018: 1-6. |
[13] | LIN Min, CHEN Qiang, YAN Shuichen. Network in network [C]//International conference on learning representations. Banff: ICLR, 2014: 1-10. |
[14] | IOFFE Sergey, SZEGEDY Christian. Batch normalization: accelerating deep network training by reducing internal covariate shift [C]//International conference on macine learning(ICML). Lille: IMLS, 2015: 448-456. |
[15] | CHA Youngjin, CHOI Wooram. Deep learning based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastucture Engineering, 2017,32:361-378. |
[16] | LENG Jianwei, GUO Kai. Research on monocular visual gesture positioning based on YOLOv2[C]//Proceeding of the 37th chinese control conference. Shanghai: Shanghai Systems Science Press, 2018: 9101-9106. |
[17] | ZHANG Hongwei, ZHANG Lingjie, LI Pengfei, et al. Yarn-dyed fabric defect detection with YOLOv2 based on deep convolution neural networks [C]//Data driven control and learning systems conference. Enshi: IEEE, 2018: 170-174. |
[18] | 何晓昀, 韦平, 张林. 基于深度学习的籽棉中异性纤维检测方法[J]. 纺织学报, 2018,39(6):131-135. |
HE Xiaoyun, WEI Ping, ZHANG Lin. Detection method of foreign fibers in seed cotton based on deep-learning[J]. Journal of Textile Reasearch, 2018,39(6):131-135. |
[1] | 朱世根, 杨宏贤, 白云峰, 丁浩, 朱巧莲. 长条状细薄带钩零件变形自动检测系统[J]. 纺织学报, 2020, 41(10): 158-163. |
[2] | 张建新, 李琦. 基于机器视觉的筒子纱密度在线检测系统[J]. 纺织学报, 2020, 41(06): 141-146. |
[3] | 王文胜, 李天剑, 冉宇辰, 卢影, 黄民. 筒子纱纱笼纱杆的定位检测方法[J]. 纺织学报, 2020, 41(03): 160-167. |
[4] | 金守峰, 林强强, 马秋瑞, 张浩. 基于BP 神经网络的织物表面绒毛质量的检测方法[J]. 纺织学报, 2020, 41(02): 69-76. |
[5] | 景军锋, 张君扬, 张缓缓, 苏泽斌. 梯度空间下的丝饼表面缺陷检测[J]. 纺织学报, 2020, 41(02): 44-51. |
[6] | 孙卫红, 阮棉奖, 邵铁锋, 梁曼. 基于机器视觉的生丝抱合性能检测方法[J]. 纺织学报, 2019, 40(08): 164-168. |
[7] | 景军锋, 张星星. 基于机器视觉的玻璃纤维管纱毛羽检测[J]. 纺织学报, 2019, 40(05): 157-162. |
[8] | 徐洋, 朱治潮, 盛晓伟, 余智祺, 孙以泽. 基于机器视觉的鞋面特征点自动识别改进方法[J]. 纺织学报, 2019, 40(03): 168-174. |
[9] | 景军锋, 郭根. 基于机器视觉的丝饼毛羽检测[J]. 纺织学报, 2019, 40(01): 147-152. |
[10] | 牟新刚 蔡逸超 周晓 陈国良. 基于机器视觉的筒子纱缺陷在线检测系统[J]. 纺织学报, 2018, 39(01): 139-145. |
[11] | 杨松林 马帅 丁朝鹏 范红丽 薛欢欢. 应用机器视觉的织物表面绒毛率测试系统[J]. 纺织学报, 2017, 38(06): 118-123. |
[12] | 蒋双歌 王蕾 王静 刘建立 高卫东. 织物折皱回复的各向异性表征[J]. 纺织学报, 2016, 37(06): 42-47. |
[13] | 李文羽 程隆棣. 基于机器视觉和图像处理的织物疵点检测研究新进展[J]. 纺织学报, 2014, 35(3): 158-0. |
[14] | 王蕾, 刘建立, 高卫东. 基于机器视觉的织物洗涤后尺寸稳定性评价[J]. 纺织学报, 2012, 33(7): 43-47. |
[15] | 霍铖宇 华强 卢达 范龙保 李新 徐刚. 基于虚拟仪器的针织机械用高速电磁阀测试系统[J]. 纺织学报, 2011, 32(10): 134-0. |
|