纺织学报 ›› 2020, Vol. 41 ›› Issue (04): 9-14.doi: 10.13475/j.fzxb.20190500106
WANG Zongqian1, YANG Haiwei1, ZHOU Jian2, LI Changlong1()
摘要:
为提高丝素蛋白气凝胶的力学性能,采用尿素溶液体系对蚕丝进行脱胶处理后,经丝素蛋白溶解、稀释、冷冻干燥制备得到丝素蛋白气凝胶,借助扫描电子显微镜、X射线衍射光谱仪、红外光谱仪和万能材料试验机对气凝胶的形貌与结构进行分析,并与碳酸钠脱胶蚕丝制备的气凝胶进行对比。结果表明:非碱体系的尿素脱胶可降低对丝素蛋白的损伤,制备得到的气凝胶形貌完整,具有稳定的骨架结构,β-折叠结构相对含量为50.27%,结晶度为49.33%;压缩形变为70%时,尿素脱胶气凝胶的压缩强度为(32.36 ± 2.35) kPa,压缩模量为(119.31 ± 8.93 ) kPa,上述指标均远高于碳酸钠脱胶工艺制备的丝素蛋白气凝胶。
中图分类号:
[1] | ZHU B, WANG H, LEOW W R, et al. Silk fibroin for flexible electronic devices[J]. Advanced Materials, 2016,28(22):4250-4265. |
[2] | KOH L D, CHENG Y, TENG C P, et al. Structures, mechanical properties and applications of silk fibroin materials[J]. Progress in Polymer Science, 2015,46:86-110. |
[3] | QI Y, WANG H, WEI K, et al. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures[J]. International Journal of Molecular Sciences, 2017,18(3):237-258. |
[4] |
SU D, JIANG L, CHEN X, et al. Enhancing the gelation and bioactivity of injectable silk fibroin hydrogel with laponite nanoplatelets[J]. ACS Applied Materials & Interfaces, 2016,8(15):9619-9628.
pmid: 26989907 |
[5] | SOMMER M R, VETSCH J R, LEEMANN J, et al. Silk fibroin scaffolds with inverse opal structure for bone tissue engineering[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2017,105(7):2074-2084. |
[6] | 王宗乾, 杨海伟, 汤立洋, 等. 丝素蛋白/聚乙烯醇复合膜的制备及其表征[J]. 纺织学报, 2018,39(11):14-19. |
WANG Zongqian, YANG Haiwei, TANG Liyang, et al. Preparation and characterization of silk fibroin/polyvinyl alcohol composite membrane[J]. Journal of Textile Research, 2018,39(11):14-19. | |
[7] | WANG S, ZHANG Y, WANG H, et al. Preparation, characterization and biocompatibility of electrospinning heparin-modified silk fibroin nanofibers[J]. International Journal of Biological Macromolecules, 2011,48(2):345-353. |
[8] |
WEN X, PENG X, FU H, et al. Preparation and in vitro evaluation of silk fibroin microspheres produced by a novel ultra-fine particle processing system[J]. International Journal of Pharmaceutics, 2011,416(1):195-201.
pmid: 21741461 |
[9] | TSIORIS K, RAJA W K, PRITCHARD E M, et al. Fabrication of silk microneedles for controlled-release drug delivery[J]. Advanced Functional Materials, 2012,22(2):330-335. |
[10] | SMIRNOVA I, GURIKOV P. Aerogel production: current status, research directions, and future opportunities[J]. The Journal of Supercritical Fluids, 2018,134:228-233. |
[11] | MALEKI H. Recent advances in aerogels for environmental remediation applications: a review[J]. Chemical Engineering Journal, 2016,300:98-118. |
[12] | STERGAR J, MAVER U. Review of aerogel-based materials in biomedical applications[J]. Journal of Sol-Gel Science and Technology, 2016,77(3):738-752. |
[13] |
MALEKI H, HUESING N. Silica-silk fibroin hy-brid (bio) aerogels: two-step versus one-step hybridization[J]. Journal of Sol-Gel Science and Technology, 2019. DOI: 10.1007/s10971-019-04933-4.
pmid: 23833395 |
[14] |
MARIN M A, MALLEPALLY R R, MCHUGH M A. Silk fibroin aerogels for drug delivery applications[J]. The Journal of Supercritical Fluids, 2014,91:84-89.
doi: 10.1016/j.supflu.2014.04.014 |
[15] | ZHAO S, MALFAIT W J, GUERRERO-ALBURQUERQUE N, et al. Biopolymer aerogels and foams: chemistry, properties, and applications[J]. Angewandte Chemie International Edition, 2018,57(26):7580-7608. |
[16] | WU F, ZHU Y, CHEN Y, et al. Preparation and characterization of silk fibroin aerogel[J]. Journal of Donghua University(English Edition), 2018,35(1):16-20. |
[17] | GOIMIL L, SANTOS-ROSALES V, DELGADO A, et al. scCO2-foamed silk fibroin aerogel/poly(ε-caprolactone) scaffolds containing dexamethasone for bone regeneration[J]. Journal of CO2 Utilization, 2019,31:51-64. |
[18] | MALLEPALLY R R, MARIN M A, SURAMPUDI V, et al. Silk fibroin aerogels: potential scaffolds for tissue engineering applications[J]. Biomedical Materials, 2015.DOI: 10.1088/1748-6041/10/3/035002. |
[19] | WANG H Y, ZHANG Y Q. Effect of regeneration of liquid silk fibroin on its structure and characteriza-tion[J]. Soft Matter, 2013,9(1):138-145. |
[20] | MALEKI H, MONTES S, HAYATI-ROODBARI N, et al. Compressible, thermally insulating, and fire retardant aerogels through self-assembling silk fibroin biopolymers inside a silica structure: an approach towards 3D printing of aerogels[J]. ACS Applied Materials & Interfaces, 2018,10(26):22718-22730. |
[21] |
MALEKI H, WHITMORE L, HUESING N. Novel multifunctional polymethylsilsesquioxane-silk fibroin aerogel hybrids for environmental and thermal insulation applications[J]. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018,6(26):12598-12612.
doi: 10.1039/c8ta02821d pmid: 30713688 |
[22] |
YETISKIN B, OKAY O. High-strength and self-recoverable silk fibroin cryogels with anisotropic swelling and mechanical properties[J]. International Journal of Biological Macromolecules, 2019,122:1279-1289.
pmid: 30227202 |
[23] | 王宗乾, 杨海伟, 王邓峰. 脱胶对蚕丝纤维的溶解及丝素蛋白性能的影响[J]. 纺织学报, 2018,39(4):69-76. |
WANG Zongqian, YANG Haiwei, WANG Dengfeng. Influence of degumming on solution of silk fiber and property of fibroin[J]. Journal of Textile Research, 2018,39(4):69-76. | |
[24] | WANG Z, YANG H, LI W, et al. Effect of silk degumming on the structure and properties of silk fibroin[J]. The Journal of The Textile Institute, 2019,110(1):134-140. |
[25] | GUAN Y, YANG X, WANG L, et al. A novel silk/polyester woven small diameter arterial prosjournal: degumming and the influence on cytocompatibility[J]. Fibers and Polymers, 2015,16(7):1533-1539. |
[26] | JIANG F, HSIEH Y L. Amphiphilic superabsorbent cellulose nanofibril aerogels[J]. Journal of Materials Chemistry A: Material for Energy and Sustainability, 2014,2(18):6337-6342. |
[27] |
ZHANG R, GUO J, LIU Y, et al. Effects of sodium salt types on the intermolecular interaction of sodium alginate/antarctic krill protein composite fibers[J]. Carbohydrate Polymers, 2018,189:72-78.
doi: 10.1016/j.carbpol.2018.02.013 pmid: 29580428 |
[28] | WANG Z, YANG H, ZHU Z. Study on the blends of silk fibroin and sodium alginate: hydrogen bond formation, structure and properties[J]. Polymer, 2019,163:144-153. |
[29] | BETZ M, GARCÍA-GONZÁLEZ C A, SUBRAHMANYAM R P, et al. Preparation of novel whey protein-based aerogels as drug carriers for life science applications[J]. The Journal of Supercritical Fluids, 2012,72:111-119. |
[30] |
FLOREN M L, SPILIMBERGO S, MOTTA A, et al. Carbon dioxide induced silk protein gelation for biomedical applications[J]. Biomacromolecules, 2012,13(7):2060-2072.
doi: 10.1021/bm300450a pmid: 22657735 |
[31] | YETISKIN B, OKAY O. High-strength silk fibroin scaffolds with anisotropic mechanical properties[J]. Polymer, 2017,112:61-70. |
[32] |
AK F, OZTOPRAK Z, KARAKUTUK I, et al. Macroporous silk fibroin cryogels[J]. Biomacromolecules, 2013,14(3):719-727.
doi: 10.1021/bm3018033 pmid: 23360211 |
[33] | WANG K, LI R, MA J H, et al. Extracting keratin from wool by using L-cysteine[J]. Green Chemistry, 2016,18(2):476-481. |
[34] | 赵明宇, 刘海辉, 王学晨, 等. 角蛋白/多壁碳纳米管复合纤维的制备[J]. 纺织学报, 2017,38(2):21-25. |
ZHAO Mingyu, LIU Haihui, WANG Xuechen, et al. Preparation of keratin/multi-walled carbon nanotubes composite fibers[J]. Journal of Textile Research, 2017,38(2):21-25. | |
[35] | LAWRENCE B D, OMENETTO F, CHUI K, et al. Processing methods to control silk fibroin film biomaterial features[J]. Journal of Materials Science, 2008,43(21):6967-6985. |
[36] |
HA S W, TONELLI A E, HUDSON S M. Structural studies of bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning[J]. Biomacromolecules, 2005,6(3):1722-1731.
doi: 10.1021/bm050010y pmid: 15877399 |
[37] |
NAM J, PARK Y H. Morphology of regenerated silk fibroin: effects of freezing temperature, alcohol addition, and molecular weight[J]. Journal of Applied Polymer Science, 2001,81(12):3008-3021.
doi: 10.1002/(ISSN)1097-4628 |
[38] |
NOGUEIRA G M, DEMORAES M A, RODAS A C D, et al. Hydrogels from silk fibroin metastable solution: formation and characterization from a biomaterial perspective[J]. Materials Science and Engineering: C, 2011,31(5):997-1001
doi: 10.1016/j.msec.2011.02.019 |
[39] |
LU Q, HU X, WANG X, et al. Water-insoluble silk films with silk I structure[J]. Acta Biomaterialia, 2010,6(4):1380-1387.
doi: 10.1016/j.actbio.2009.10.041 |
[40] |
MING J, ZUO B. Silk I structure formation through silk fibroin self-assembly[J]. Journal of Applied Polymer Science, 2012,125(3):2148-2154.
doi: 10.1002/app.36354 |
[1] | 杨萍, 严飙, 马丕波. 网状结构织物制备与应用研究进展[J]. 纺织学报, 2021, 42(01): 175-180. |
[2] | 陈美玉, 刘玉琳, 胡革明, 孙润军. 涡流纺纱线的包缠加捻对其力学性能的影响[J]. 纺织学报, 2021, 42(01): 59-66. |
[3] | 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77. |
[4] | 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36. |
[5] | 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2 对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41. |
[6] | 宋广州, 涂芳芳, 丁梦瑶, 戴梦男, 殷音, 董凤林, 王建南. 丝素蛋白负电性增强改性及其对降钙素基因相关肽的加载能力[J]. 纺织学报, 2020, 41(12): 7-12. |
[7] | 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121. |
[8] | 陈康, 蒋权, 姬洪, 张阳, 宋明根, 张玉梅, 王华平. 高强型聚酯工业丝在不同温度下的蠕变断裂机制[J]. 纺织学报, 2020, 41(11): 1-9. |
[9] | 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7. |
[10] | 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14. |
[11] | 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/ 聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26. |
[12] | 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31. |
[13] | 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14. |
[14] | 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173. |
[15] | 高珊, 卢业虎, 张德锁, 吴雷, 王来力. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(04): 117-122. |
|