纺织学报 ›› 2020, Vol. 41 ›› Issue (05): 140-145.doi: 10.13475/j.fzxb.20190701006

• 服装工程 • 上一篇    下一篇

新型充气夹克的研制与保暖性能评价

苏文桢1, 卢业虎1,2(), 王方明3, 宋文芳4   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215006
    2.南通纺织丝绸产业技术研究院, 江苏 南通 226300
    3.苏州市兴丰强纺织科技有限公司, 江苏 苏州 215227
    4.广东工业大学 艺术与设计学院, 广东 广州 510006
  • 收稿日期:2019-07-01 修回日期:2020-02-05 出版日期:2020-05-15 发布日期:2020-06-02
  • 通讯作者: 卢业虎
  • 作者简介:苏文桢(1996—),女,硕士生。主要研究方向为功能服装开发。
  • 基金资助:
    国家自然科学基金项目(51606131);苏州市重点产业技术创新项目(SYG201812);南通市科技计划项目(JC2018039)

Development of novel air inflatable jacket and thermal insulating property evaluation

SU Wenzhen1, LU Yehu1,2(), WANG Fangming3, SONG Wenfang4   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215006, China
    2. Nantong Textile and Silk Industrial Technology Research Institute, Nantong, Jiangsu 226300, China
    3. Suzhou Xingfengqiang Textile Technology Co., Ltd., Suzhou, Jiangsu 215227, China
    4. School of Art and Design, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
  • Received:2019-07-01 Revised:2020-02-05 Online:2020-05-15 Published:2020-06-02
  • Contact: LU Yehu

摘要:

为实现防寒服保暖性能的动态调节,研发了以空气为保暖材料的Mountain充气夹克,采用外置手动按压充气泵连续改变充气量及其保暖性能。基于暖体假人实验,在不同充气量、有无袖子、是否穿抓绒衣3种实验条件下测试了充气夹克的局部热阻和总热阻,对比了NuDown充气夹克的隔热性能。实验结果表明:充气状态下的局部热阻和总热阻明显高于未充气状态,充气量会显著影响热阻,充气量越大服装热阻越高,且Moutain充气夹克在充气状态下比NuDown充气夹克具有更佳的保暖调节能力;有袖子时的局部热阻和总热阻明显高于无袖子状态,腹部和背部表现尤为明显;穿抓绒衣可有效增加服装系统热阻,但会很大程度地影响充气夹克的保暖调节能力。

关键词: 防寒服装, 充气夹克, 保暖性能, 局部热阻, 总热阻, 暖体假人

Abstract:

To facilitate dynamic regulation of thermal insulating property of cold protective clothing, an air inflatable jacket, branded as Mountain, with air as thermal insulating material was developed, with air inflation and hence the thermal insulation being achieved by pressing the air pump manually. The local and total thermal insulation of the developed air inflatable jacket was tested by thermal manikin with four air inflation volumes, with or without sleeves and whether or not to wear fleece. Meanwhile, the thermal insulating properties of Mountain were compared with that of air inflatable jacket NuDown. The results showed that the local and total thermal insulation of air inflatable jacket Mountain in the inflated condition are obviously higher than that when not inflated, and the thermal insulation become more obvious when increasing the air inflation volume. The adjustment ability for thermal insulation of the newly developed air inflatable jacket Mountain is better than that of NuDown under the inflated condition. The local and total thermal insulation effects of air inflatable jacket with sleeves are significantly higher than those without sleeves, and the differences are especially notable at the abdomen and back. It is also shown that the thermal insulation of the inflatable jacket provide better thermal insulation when a fleece is worn in conjunction, but it greatly affect the adjustment ability.

Key words: cold protective clothing, air inflatable jacket, thermal insulating property, local thermal insulation, total thermal insulation, thermal manikin

中图分类号: 

  • TS941.73

表1

充气夹克面料信息"

里外层 纤维成分 组织结构 面密度/(g·m-2)
外层 100%涤纶 机织平纹 60
里层 100%涤纶 针织起绒 140

图1

气囊粘结线示意图"

图2

Mountain充气夹克正背面款式图"

图3

不同充气量下Mountain充气夹克的局部热阻"

图4

4种充气夹克不同充气量下的总热阻比较"

图5

有无袖子情况下Mountain充气夹克的局部热阻"

图6

有无袖子情况下2种充气夹克的上身总热阻比较"

图7

穿抓绒衣对局部热阻的影响"

图8

抓绒衣对上身总热阻的影响"

[1] 佟玫, 陈立丽, 王博, 等. 人体温度的调节及冬季防寒服装穿着分析[J]. 中国个体防护装备, 2014(1):13-15.
TONG Mei, CHEN Lili, WANG Bo, et al. Human body temperature adjust and winter cold-resistant clothing in analysis[J]. China Personal Protective Equipment, 2014(1):13-15.
[2] JIN Q, LIN D, ZHANG H, et al. Thermal sensations of the whole body and head under local cooling and heating conditions during setp-changes between workstation and ambient environment[J]. Building and Environment, 2011(46):2342-2350.
[3] XIONG J, LIAN Z, ZHANG H. Effects of exposure to winter temperature step-changes on human subjective perceptions[J]. Building and Environment, 2016(107):226-234.
[4] LUO M, ZHOU X, ZHU Y, et al. Revisiting an overlooked parameter in thermal comfort studies, the metabolic rate[J]. Energy & Buildings, 2016,118(4):152-159.
[5] YANG C, YIN T, FU M. Study on the allowable fluctuation ranges of human metabolic rate and thermal environment parameters under the condition of thermal comfort[J]. Building and Environment, 2016,103(7):155-164.
doi: 10.1016/j.buildenv.2016.04.008
[6] YU Z, YANG B, ZHU N. Effect of thermal transient on human thermal comfort in temporarily occupied space in winter: a case study in Tianjin[J]. Building and Environment, 2015(93):27-33.
[7] 韩笑, 王永进, 刘莉, 等. 冬季防寒服装中开口结构设计探析[J]. 中国个体防护装备, 2009(4):31-35.
HAN Xiao, WANG Yongjin, LIU Li, et al. Analysis of opening design in winter coldproof apparel[J]. China Personal Protective Equipment, 2009(4):31-35.
[8] NEWSHAM G R. Clothing as a thermal comfort moderator and the effect on energy consumption[J]. Energy & Buildings, 1997(26):283-291.
[9] JIAO Y, YU H, WANG T, et al. The relationship between thermal environments and clothing insulation for elderly individuals in Shanghai[J]. Journal of Thermal Biology, 2017(70):28-36.
[10] BRAGER G S, DEAR R J. Thermal adaptation in the built environment: a literature review[J]. Energy and Buildings, 1998,27(1):83-96.
doi: 10.1016/S0378-7788(97)00053-4
[11] SONG W, WANG F, ZHANG C. On the improvement of thermal comfort of university students by using electrically and chemically heated clothing in a cold classroom environment[J]. Building and Environment, 2015(94):704-713.
[12] 李佳怡, 卢业虎, 叶鑫, 等. 智能发热户外防寒服装研制与性能评价[J]. 东华大学学报(自然科学版), 2018,44(1):83-89.
LI Jiayi, LU Yehu, YE Xin, et al. Performance evaluating of outdoor cold protective clothing with smart heating function[J]. Journal of Donghua University(Natural Science Edition), 2018,44(1):83-89.
[13] ROBERT H, CORY T, MATT M. Inflatable garment with lightweight air pump and method of use: 20170295860[P]. 2017-10-19.
[14] 赖军, 张梦莹, 张华, 等. 消防服衣下空气层的作用与测定方法研究进展[J]. 纺织学报, 2017,38(6):151-156.
LAI Jun, ZHANG Mengying, ZHANG Hua, et al. Research progress on air gap entrapped in firefighters' protective clothing and its measurement methods[J]. Journal of Textile Research, 2017,38(6):151-156.
[15] ROGALE F S, ROGALE D, NIKOLIC G. Intelligent clothing: first and second generation clothing with adaptive thermal insulation properties[J]. Textile Research Journal, 2018,88(19):2214-2233.
doi: 10.1177/0040517517718190
[16] 苏文桢, 宋文芳, 卢业虎, 等. 充气防寒服保暖性能研究[J]. 纺织学报, 2020,41(2):120-124.
SU Wenzhen, SONG Wenfang, LU Yehu, et al. Study on the thermal insulation of air inflatable cold protective clothing[J]. Journal of Textile Research, 2020,41(2):120-124.
[1] 苏文桢, 宋文芳, 卢业虎, 杨秀月. 充气防寒服的保暖性能[J]. 纺织学报, 2020, 41(02): 115-118.
[2] 胡紫婷, 郑晓慧, 冯铭铭, 王英健, 刘莉, 丁松涛. 衣下空气层对透气型防护服热阻和湿阻的影响[J]. 纺织学报, 2019, 40(11): 145-150.
[3] 赵蒙蒙, 柯莹, 王发明, 李俊. 通风服热舒适性研究现状与展望[J]. 纺织学报, 2019, 40(03): 183-188.
[4] 邓辉 师云龙 胡源盛 钱晓明 范金土. 开放式局部热阻测试系统的实现[J]. 纺织学报, 2018, 39(09): 127-133.
[5] 张文欢 钱晓明 师云龙 范金土 牛丽. 服装局部热阻与总热阻的动静态关系及其模型[J]. 纺织学报, 2018, 39(07): 111-115.
[6] 师云龙 钱晓明 梁肖肖 张文欢 邓辉 王立晶 范金土 . 仿人体出汗比例的 Walter 暖体假人皮肤制备[J]. 纺织学报, 2018, 39(05): 103-107.
[7] 杨莉 张艳艳 杨稳 苏瑞. 服用聚酰亚胺纤维织物的热学性能[J]. 纺织学报, 2017, 38(08): 62-67.
[8] 杨树 李玛莎. 羊毛纤维集合体的分形结构与其保暖性的关系[J]. 纺织学报, 2017, 38(08): 11-15.
[9] 许静娴 李俊 刘慧娟 王云仪. 热调节暖体假人在着装舒适性评价中的应用现状[J]. 纺织学报, 2017, 38(07): 164-172.
[10] 崔俊杰 徐旭凡 马辉. 多孔绵材料层对防水透湿复合织物性能的影响[J]. 纺织学报, 2016, 37(11): 55-58.
[11] 郭晓芳 刘文娟. 巴尔虎蒙古袍的热舒适性能[J]. 纺织学报, 2016, 37(01): 123-126.
[12] 李佳怡 卢业虎 王发明 孙艳娇 王喆 朱敏. 应用男体出汗图谱的运动装设计与性能评价[J]. 纺织学报, 2016, 37(01): 116-122.
[13] 林雪 王云仪 李俊. 藏袍的非对称式隔热对人体热舒适的影响[J]. 纺织学报, 2014, 35(4): 105-0.
[14] 李俊 何佳臻 王云仪. 常用高温及低温防护服隔热性能的对比[J]. 纺织学报, 2013, 34(10): 121-0.
[15] 王毅 王铭 邹钺 李书政 刘赟. 暖体假人表面温度的均匀性[J]. 纺织学报, 2012, 33(10): 113-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!