纺织学报 ›› 2020, Vol. 41 ›› Issue (05): 30-37.doi: 10.13475/j.fzxb.20190702208

• 纤维材料 • 上一篇    下一篇

磷酸改性芳纶对聚氨酯硬质泡沫阻燃抑烟性能的影响

许黛芳()   

  1. 嘉兴学院 设计学院, 浙江 嘉兴 314001
  • 收稿日期:2019-07-13 修回日期:2020-02-07 出版日期:2020-05-15 发布日期:2020-06-02
  • 作者简介:许黛芳(1988—),女,讲师,博士。主要研究方向为纺织复合材料。E-mail: xudaifang646388@163.com
  • 基金资助:
    浙江省服装工程技术研究中心开放基金项目(2019FZKF03);嘉兴学院2019年度实验室开放项目(42255001);嘉兴学院2018年教学改革项目(002CD1904);嘉兴学院科研启动金项目(70518017)

Modification of aramid fiber with phosphorus acid and its effect on flammability and smoke suppression for rigid polyurethane foams

XU Daifang()   

  1. College of Design, Jiaxing University, Jiaxing, Zhejiang 314001, China
  • Received:2019-07-13 Revised:2020-02-07 Online:2020-05-15 Published:2020-06-02

摘要:

为提高聚氨酯泡沫的阻燃性能,采用磷酸改性芳纶对聚氨酯硬质泡沫进行阻燃改性,借助氧指数仪、烟密度仪、锥形量热仪、热重分析仪等对改性前后聚氨酯硬质泡沫的阻燃性能、产烟行为、燃烧行为、热稳定性和力学性能进行表征。结果表明:添加改性芳纶的聚氨酯泡沫具有更好的阻燃、抑烟和力学性能;相对于纯聚氨酯泡沫,添加质量分数为5%改性芳纶的聚氨酯泡沫的极限氧指数提高了15.8%,最大烟密度、最大燃烧热释放速率、热释放量、最大生烟速率、产烟量分别降低了25%、25.3%、10%、35.7%、47.3%;改性芳纶的添加有利于改善聚氨酯硬质泡沫的热稳定性,使其在700 ℃时的残炭率增加为14.5%。

关键词: 聚氨酯硬质泡沫, 芳纶, 磷酸改性, 阻燃性能, 抑烟性能

Abstract:

In order to improve the flame retardant properties of polyurethane foams, aramid fiber (AF) modified by phosphoric acid was added to the rigid polyurethane foams. Oxygen index, smoke density meter, cone calorimeter, and thermogravimetric analyzer were used to characterize the flame retardancy, fire behavior, thermal stability and mechanical properties of the rigid polyurethane foams and flame-retardant rigid polyurethane foams. The results show that the polyurethane foams containing modified AF (MAF) have better flame retardant, smoke suppression and mechanical properties than the polyurethane foams containing AF. Compared with the pure polyurethane foams, the LOI for the polyurethane foams containing 5% content of MAF is enhanced by 15.8%, max smoke density, peak heat release rate, total heat release, peak smoke production rate and total smoke production release values are decreased by 25%, 25.3%, 10%, 35.7%, 47.3% respectively. MAF can improve the thermal stability of the polyurethane foams, and the residual mass at 700 ℃ is 14.5%, which is more than that of pure polyurethane foam.

Key words: rigid polyurethane foam, aramid fiber, modification by phosphoric acid, flammability, smoke suppression property

中图分类号: 

  • TQ328.3

表1

阻燃聚氨酯泡沫的配方"

样品
名称
聚醚多元醇
4110 质量分数
有机硅油
质量分数
辛酸亚锡
质量分数
三亚乙基二胺
质量分数
一氟二氯乙烷
质量分数
多苯基多亚甲基多
异氰酸酯质量分数
AF质量
分数
MAF质量
分数
RPUF 100 1.5 0.2~0.3 0.2~0.3 25 100
PU/AF 100 1.5 0.2~0.3 0.2~0.3 25 100 5
PU/MAF 100 1.5 0.2~0.3 0.2~0.3 25 100 5

图1

改性前后芳纶的红外光谱图"

图2

改性前后芳纶和阻燃聚氨酯泡沫的X衍射图谱"

图3

改性前后的阻燃聚氨酯泡沫的烟密度曲线"

表2

改性前后的芳纶阻燃聚氨酯泡沫的烟密度测试结果"

样品名称 烟密度等级 最大烟密度/%
RPUF 15.02 27.78
PU/AF 14.51 24.12
PU/MAF 12.37 20.83

图4

改性前后聚氨酯泡沫的热释放速率、热释放量、产烟速率和产烟量曲线"

表3

改性前后聚氨酯泡沫燃烧性能参数"

样品名称 热释放速率峰值/
(kW·m-2)
热释放量/
(MJ·m-2)
产烟速率峰值/
(m2·s-1)
产烟量/
(m2·m-2)
燃烧50 s时的
残炭率/%
RPUF 258.1 41.9 0.056 742.8 61.9
PU/AF 197.0 46.8 0.039 577.1 87.8
PU/MAF 192.8 37.7 0.036 391.6 88.4

图5

试样的热重分析"

图6

改性前后聚氨酯泡沫残的扫描电镜照片(×300)"

表4

改性前后聚氨酯泡沫残炭的元素含量"

样品名称 C N O P
RPUF 67.05 16.43 16.22 0.00
PU/AF 48.80 27.72 22.44 0.00
PU/MAF 50.29 37.54 11.71 0.06

表5

改性前后的聚氨酯泡沫的密度和压缩性能"

样品名称 密度/
(kg·m-3)
压缩强度/
MPa
比强度/
(MPa·g-1·cm-3)
RPUF 49.1 0.16 3.16
PU/AF 50.5 0.44 8.71
PU/MAF 51.3 0.54 10.53
[1] ZATORSKI W, BRZOZOWSKI ZK, KOLBRECKI A. New developments in chemical modification of fire-safe rigid polyurethane foams[J]. Polymer Degradation Stability, 2008,93(11):2071-2076.
[2] LEVCHIK S V, WEIL E D. Thermal decomposition, combustion and fire-retardancy of polyurethanes: a review of the recent literature[J]. Polymer International, 2010,53(12):1901-1929.
[3] CHATTOPADHYAY D K, WEBSTER D C. Thermal stability and flame retardancy of polyurethanes[J]. Progress in Polymer Science, 2009,34(10):1068-1133.
[4] SONNENSCHEIN M F, WENDT B L. Design and formulation of soybean oil derived flexible polyurethane foams and their underlying polymer structure/property relationships[J]. Polymer, 2013,54(10):2511-2520.
[5] USTA N. Investigation of fire behavior of rigid polyurethane foams containing fly ash and intumescent flame retardant by using a cone calorimeter[J]. J Appl Polym Sci, 2012,124(4):3372-3382.
[6] KULESZA K, PIELICHOWSKI K. Thermal decomposition of bisphenol a-based polyetherurethanes blown with pentane: part II: influence of the novel NaH2PO4/NaHSO4 flame retardant system[J]. Journal of Analytical & Applied Pyrolysis, 2006,76(1):249-253.
[7] KONIG A, KROKE E. Flame retardancy working mechanism of methyl-DOPO and MPPP in flexible polyurethane foam[J]. Fire & Materials, 2012,36(1):1-15.
[8] CHEN M J, SHAO Z B, WANG X L, et al. Halogen-free flame-retardant flexible polyurethane foam with a novel nitrogen-phosphorus flame retardant[J]. Ind Eng Chem Res, 2012,51(29):9769-9776.
[9] 宋艳, 许亮, 李锦春, 等. 新型磷氮型阻燃剂的制备及其阻燃聚氨酯泡沫塑料[J]. 复合材料学报, 2016,33(11):2461-2467.
SONG Yan, XU Liang, LI Jinchun, et al. Preparation of new phosphorus and nitrogen flame retardants and flame retardant polyurethane foam plastics[J]. Acta Materiae Compositae Sinica, 2016,33(11):2461-2467.
[10] 卢林刚, 徐晓楠, 王大为, 等. 新型无卤膨胀阻燃聚丙烯的制备及阻燃性能[J]. 复合材料学报, 2013,30(1):83-89.
LU Lingang, XU Xiaonan, WANG Dawei, et al. Preparation and flame retardant properties of new halogen-free expanded flame retardant polypropy-lene[J]. Acta Materiae Compositae Sinica, 2013,30(1):83-89.
[11] 邓婷婷, 张光先, 代方银, 等. 对位芳纶磷酸化表面改性[J]. 纺织学报, 2015,36(11):12-19.
DENG Tingting, ZHANG Guangxian, DAI Fangyin, et al. Surface modification of para-aramid fiber by phosphoric acid[J]. Journal of Textile Research, 2015,36(11):12-19.
[12] CHEN X, WANG W, JIAO C. A recycled environmental friendly flame retardant by modifying para-aramid fiber with phosphorus acid for thermoplastic polyurethane elastomer[J]. J Hazard Mat, 2017,331:257-264.
[13] CIECIERSKA E, JURCZYK-KOWALSKA M, BAZARNIK P, et al. Flammability, mechanical properties and structure of rigid polyurethane foams with different types of carbon reinforcing materials[J]. Composite Structures, 2016,140:67-76.
[14] 温中印, 曹建鹏, 卞雷雷, 等. DMMP、TCPP与EG对硬质聚氨酯泡沫阻燃协同效应及机理探讨[J]. 塑料工业, 2016,44(4):111-115.
WEN Zhongxin, CAO Jianpeng, BIAN Leilei, et al. Synergistic effect and mechanism of DMMP, TCPP and EG on flame retardant of rigid polyurethane foam[J]. Plastics Industry, 2016,44(4):111-115.
[15] XU W, LIU L, WANG S, et al. Synergistic effect of expandable graphite and aluminum hypophosphite on flame-retardant properties of rigid polyurethane foam[J]. Journal of Applied Polymer Science, 2015,132(47). DOI: 10.1002/APP.42842.
[16] 卢林刚, 陈英辉, 赵瑾, 等. DOPOMPC-APP-MWCNTs协同阻燃环氧树脂的制备[J]. 复合材料学报, 2015,32(1):101-107.
LU Lingang, CHEN Yinghui, ZHAO Jin, et al. Preparation of DOPOMPC-APP-MWCNTs as a synergistic flame retardant epoxy resin[J]. Acta Materiae Compositae Sinica, 2015,32(1):101-107.
[17] AFROUGHSABET V, BIOLZI L, OZBAKKALOGLU T. High-performance fiber-reinforced concrete: a review[J]. Journal of Materials Science, 2016,51(14):6517-6551.
[18] ZHANG C G, WANG H L, QIANG L I, et al. Preparation of new insulation formula of aramid fiber and NBR system[J]. Journal of Solid Rocket Technology, 2008,31(6):635-641.
[19] AKATO K, BHAT G. 10-High performance fibers from aramid polymers[J]. Structure and Properties of High-Performance Fibers, 2017,15:245-266.
[20] 许黛芳, 俞科静, 钱坤, 等. 芳纶短纤和浆粕增强聚氨酯泡沫的结构和性能研究[J]. 宇航材料工艺, 2018(2):29-34.
XU Daifang, YU Kejing, QIAN Kun, et al. Microstructure and properties of aramid-fiber and aramid-pulp reinforced rigid polyurethane foams[J]. Aerospace Materials Technology, 2018(2):29-34.
[21] CHEN J, ZHU Y, NI Q, et al. Surface modification and characterization of aramid fibers with hybrid coating[J]. Applied Surface Science, 2014,321:103-108.
[22] GU R, YU J, HU C, et al. Surface treatment of para-aramid fiber by argon dielectric barrier discharge plasma at atmospheric pressure[J]. Applied Surface Science, 2012,258(24):10168-10174.
[23] XI Min, LI Yuliang, SHANG Shuyong. Surface modification of aramid fiber by air DBD plasma at atmospheric pressure with continuous on-line process-ing[J]. Surface & Coatings Technology, 2008,202(24):6029-6033.
[24] XU Daifang, YU Kejing, QIAN Kun. Effect of tris(1-chloro-2-propyl)phosphate and modified aramid fiber on cellular structure, thermal stability and flammability of rigid polyurethane foams[J]. Polymer Degradation & Stability, 2017,144:207-220.
[25] HOOSHANGI Z, FEGHHI S A H, SHEIKH N. The effect of electron-beam irradiation and halogen-free flame retardants on properties of poly butylene terephthalate[J]. Radiation Physics and Chemistry, 2015,108:54-59.
[26] BIAN X C, TANG J H, LI Z M, et al. Dependence of flame-retardant properties on density of expandable graphite filled rigid polyurethane foam[J]. J Appl Polym Sci, 2007,104(5):3347-3355.
[27] YANG H, WANG X, SONG L, et al. Aluminum hypophosphite in combination with expandable graphite as a novel flame retardant system for rigid polyurethane foams[J]. Polymers for Advanced Technologies, 2015,25(9):1034-1043.
[28] LEI L, ZHENGZHOU W. Synergistic effect of nano magnesium amino-tris-(methylenephosphonate) and expandable graphite on improving flame retardant, mechanical and thermal insulating properties of rigid polyurethane foam[J]. Materials Chemistry and Physics, 2018,219:318-327.
[29] HU X, CHENG W, NIE W, et al. Flame retardant, thermal, and mechanical properties of glass fiber/nanoclay reinforced phenol-urea-formaldehyde foam[J]. Polymer Composites, 2016,37:2323-2332.
doi: 10.1002/pc.23411
[30] LI X, WANG Z, WU L. Preparation of a silica nanospheres/graphene oxide hybrid and its application in phenolic foams with improved mechanical strengths, friability and flame retardancy[J]. RSC Adv, 2015(5):99907-99913.
[1] 曾凡鑫, 秦宗益, 沈玥莹, 陈园余, 胡铄. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(01): 103-111.
[2] 马君志, 葛红, 王冬, 付少海. 溶胶-凝胶法改性阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(01): 10-15.
[3] 陈洁如, 邱诗苑, 杨青青, 周熠. 基于可调张力装置的芳纶织物交织阻力研究[J]. 纺织学报, 2021, 42(01): 67-72.
[4] 李美真, 赵士毅, 冯艳丽, 郭晓卿, 于晓庆. F-12芳纶织物输送带的制备及其性能[J]. 纺织学报, 2020, 41(12): 87-93.
[5] 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(07): 67-71.
[6] 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97.
[7] 李聃阳, 王瑞, 刘星, 张淑洁, 夏兆鹏, 阎若思, 代二庆. 剪切增稠液对不同结构芳纶织物防刺性能的影响[J]. 纺织学报, 2020, 41(03): 106-112.
[8] 党丹旸, 崔灵燕, 王亮, 刘雍. 纤维素纳米纤维/ 纳米蒙脱土复合气凝胶制备及其结构与性能[J]. 纺织学报, 2020, 41(02): 1-6.
[9] 庄群, 张飞, 杜兆芳, 姜华. 改性芳纶与环氧树脂复合体的制备及其防刺性能[J]. 纺织学报, 2019, 40(12): 98-103.
[10] 王璐, 丁笑君, 夏馨, 王虹, 周小红. SiO2气凝胶/芳纶非织造布复合织物的防护功能[J]. 纺织学报, 2019, 40(10): 79-84.
[11] 缪特, 张如全, 冯阳. 纳米发泡整理对芳纶过滤材料性能的影响[J]. 纺织学报, 2019, 40(09): 108-113.
[12] 吴利伟, 王伟, 林佳弘, 姜茜. 芳纶/超高分子量聚乙烯织物增强聚氨酯夹芯复合材料制备及其力学性能[J]. 纺织学报, 2019, 40(07): 64-70.
[13] 莫达杰, 李旭明, 许增慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸阻燃纤维的制备及其性能[J]. 纺织学报, 2019, 40(05): 12-17.
[14] 张安莹, 王照颖, 王锐, 董振峰, 魏丽菲, 王德义. 阻燃聚左旋乳酸及其纤维的制备与结构性能[J]. 纺织学报, 2019, 40(04): 7-14.
[15] 缪润伍, 金丽华, 魏祺煜, 韩潇, 洪剑寒. 多轴向导电芳纶增强复合材料及其电磁屏蔽性能[J]. 纺织学报, 2019, 40(02): 100-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!