纺织学报 ›› 2020, Vol. 41 ›› Issue (05): 30-37.doi: 10.13475/j.fzxb.20190702208
摘要:
为提高聚氨酯泡沫的阻燃性能,采用磷酸改性芳纶对聚氨酯硬质泡沫进行阻燃改性,借助氧指数仪、烟密度仪、锥形量热仪、热重分析仪等对改性前后聚氨酯硬质泡沫的阻燃性能、产烟行为、燃烧行为、热稳定性和力学性能进行表征。结果表明:添加改性芳纶的聚氨酯泡沫具有更好的阻燃、抑烟和力学性能;相对于纯聚氨酯泡沫,添加质量分数为5%改性芳纶的聚氨酯泡沫的极限氧指数提高了15.8%,最大烟密度、最大燃烧热释放速率、热释放量、最大生烟速率、产烟量分别降低了25%、25.3%、10%、35.7%、47.3%;改性芳纶的添加有利于改善聚氨酯硬质泡沫的热稳定性,使其在700 ℃时的残炭率增加为14.5%。
中图分类号:
[1] | ZATORSKI W, BRZOZOWSKI ZK, KOLBRECKI A. New developments in chemical modification of fire-safe rigid polyurethane foams[J]. Polymer Degradation Stability, 2008,93(11):2071-2076. |
[2] | LEVCHIK S V, WEIL E D. Thermal decomposition, combustion and fire-retardancy of polyurethanes: a review of the recent literature[J]. Polymer International, 2010,53(12):1901-1929. |
[3] | CHATTOPADHYAY D K, WEBSTER D C. Thermal stability and flame retardancy of polyurethanes[J]. Progress in Polymer Science, 2009,34(10):1068-1133. |
[4] | SONNENSCHEIN M F, WENDT B L. Design and formulation of soybean oil derived flexible polyurethane foams and their underlying polymer structure/property relationships[J]. Polymer, 2013,54(10):2511-2520. |
[5] | USTA N. Investigation of fire behavior of rigid polyurethane foams containing fly ash and intumescent flame retardant by using a cone calorimeter[J]. J Appl Polym Sci, 2012,124(4):3372-3382. |
[6] | KULESZA K, PIELICHOWSKI K. Thermal decomposition of bisphenol a-based polyetherurethanes blown with pentane: part II: influence of the novel NaH2PO4/NaHSO4 flame retardant system[J]. Journal of Analytical & Applied Pyrolysis, 2006,76(1):249-253. |
[7] | KONIG A, KROKE E. Flame retardancy working mechanism of methyl-DOPO and MPPP in flexible polyurethane foam[J]. Fire & Materials, 2012,36(1):1-15. |
[8] | CHEN M J, SHAO Z B, WANG X L, et al. Halogen-free flame-retardant flexible polyurethane foam with a novel nitrogen-phosphorus flame retardant[J]. Ind Eng Chem Res, 2012,51(29):9769-9776. |
[9] | 宋艳, 许亮, 李锦春, 等. 新型磷氮型阻燃剂的制备及其阻燃聚氨酯泡沫塑料[J]. 复合材料学报, 2016,33(11):2461-2467. |
SONG Yan, XU Liang, LI Jinchun, et al. Preparation of new phosphorus and nitrogen flame retardants and flame retardant polyurethane foam plastics[J]. Acta Materiae Compositae Sinica, 2016,33(11):2461-2467. | |
[10] | 卢林刚, 徐晓楠, 王大为, 等. 新型无卤膨胀阻燃聚丙烯的制备及阻燃性能[J]. 复合材料学报, 2013,30(1):83-89. |
LU Lingang, XU Xiaonan, WANG Dawei, et al. Preparation and flame retardant properties of new halogen-free expanded flame retardant polypropy-lene[J]. Acta Materiae Compositae Sinica, 2013,30(1):83-89. | |
[11] | 邓婷婷, 张光先, 代方银, 等. 对位芳纶磷酸化表面改性[J]. 纺织学报, 2015,36(11):12-19. |
DENG Tingting, ZHANG Guangxian, DAI Fangyin, et al. Surface modification of para-aramid fiber by phosphoric acid[J]. Journal of Textile Research, 2015,36(11):12-19. | |
[12] | CHEN X, WANG W, JIAO C. A recycled environmental friendly flame retardant by modifying para-aramid fiber with phosphorus acid for thermoplastic polyurethane elastomer[J]. J Hazard Mat, 2017,331:257-264. |
[13] | CIECIERSKA E, JURCZYK-KOWALSKA M, BAZARNIK P, et al. Flammability, mechanical properties and structure of rigid polyurethane foams with different types of carbon reinforcing materials[J]. Composite Structures, 2016,140:67-76. |
[14] | 温中印, 曹建鹏, 卞雷雷, 等. DMMP、TCPP与EG对硬质聚氨酯泡沫阻燃协同效应及机理探讨[J]. 塑料工业, 2016,44(4):111-115. |
WEN Zhongxin, CAO Jianpeng, BIAN Leilei, et al. Synergistic effect and mechanism of DMMP, TCPP and EG on flame retardant of rigid polyurethane foam[J]. Plastics Industry, 2016,44(4):111-115. | |
[15] | XU W, LIU L, WANG S, et al. Synergistic effect of expandable graphite and aluminum hypophosphite on flame-retardant properties of rigid polyurethane foam[J]. Journal of Applied Polymer Science, 2015,132(47). DOI: 10.1002/APP.42842. |
[16] | 卢林刚, 陈英辉, 赵瑾, 等. DOPOMPC-APP-MWCNTs协同阻燃环氧树脂的制备[J]. 复合材料学报, 2015,32(1):101-107. |
LU Lingang, CHEN Yinghui, ZHAO Jin, et al. Preparation of DOPOMPC-APP-MWCNTs as a synergistic flame retardant epoxy resin[J]. Acta Materiae Compositae Sinica, 2015,32(1):101-107. | |
[17] | AFROUGHSABET V, BIOLZI L, OZBAKKALOGLU T. High-performance fiber-reinforced concrete: a review[J]. Journal of Materials Science, 2016,51(14):6517-6551. |
[18] | ZHANG C G, WANG H L, QIANG L I, et al. Preparation of new insulation formula of aramid fiber and NBR system[J]. Journal of Solid Rocket Technology, 2008,31(6):635-641. |
[19] | AKATO K, BHAT G. 10-High performance fibers from aramid polymers[J]. Structure and Properties of High-Performance Fibers, 2017,15:245-266. |
[20] | 许黛芳, 俞科静, 钱坤, 等. 芳纶短纤和浆粕增强聚氨酯泡沫的结构和性能研究[J]. 宇航材料工艺, 2018(2):29-34. |
XU Daifang, YU Kejing, QIAN Kun, et al. Microstructure and properties of aramid-fiber and aramid-pulp reinforced rigid polyurethane foams[J]. Aerospace Materials Technology, 2018(2):29-34. | |
[21] | CHEN J, ZHU Y, NI Q, et al. Surface modification and characterization of aramid fibers with hybrid coating[J]. Applied Surface Science, 2014,321:103-108. |
[22] | GU R, YU J, HU C, et al. Surface treatment of para-aramid fiber by argon dielectric barrier discharge plasma at atmospheric pressure[J]. Applied Surface Science, 2012,258(24):10168-10174. |
[23] | XI Min, LI Yuliang, SHANG Shuyong. Surface modification of aramid fiber by air DBD plasma at atmospheric pressure with continuous on-line process-ing[J]. Surface & Coatings Technology, 2008,202(24):6029-6033. |
[24] | XU Daifang, YU Kejing, QIAN Kun. Effect of tris(1-chloro-2-propyl)phosphate and modified aramid fiber on cellular structure, thermal stability and flammability of rigid polyurethane foams[J]. Polymer Degradation & Stability, 2017,144:207-220. |
[25] | HOOSHANGI Z, FEGHHI S A H, SHEIKH N. The effect of electron-beam irradiation and halogen-free flame retardants on properties of poly butylene terephthalate[J]. Radiation Physics and Chemistry, 2015,108:54-59. |
[26] | BIAN X C, TANG J H, LI Z M, et al. Dependence of flame-retardant properties on density of expandable graphite filled rigid polyurethane foam[J]. J Appl Polym Sci, 2007,104(5):3347-3355. |
[27] | YANG H, WANG X, SONG L, et al. Aluminum hypophosphite in combination with expandable graphite as a novel flame retardant system for rigid polyurethane foams[J]. Polymers for Advanced Technologies, 2015,25(9):1034-1043. |
[28] | LEI L, ZHENGZHOU W. Synergistic effect of nano magnesium amino-tris-(methylenephosphonate) and expandable graphite on improving flame retardant, mechanical and thermal insulating properties of rigid polyurethane foam[J]. Materials Chemistry and Physics, 2018,219:318-327. |
[29] |
HU X, CHENG W, NIE W, et al. Flame retardant, thermal, and mechanical properties of glass fiber/nanoclay reinforced phenol-urea-formaldehyde foam[J]. Polymer Composites, 2016,37:2323-2332.
doi: 10.1002/pc.23411 |
[30] | LI X, WANG Z, WU L. Preparation of a silica nanospheres/graphene oxide hybrid and its application in phenolic foams with improved mechanical strengths, friability and flame retardancy[J]. RSC Adv, 2015(5):99907-99913. |
[1] | 曾凡鑫, 秦宗益, 沈玥莹, 陈园余, 胡铄. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(01): 103-111. |
[2] | 马君志, 葛红, 王冬, 付少海. 溶胶-凝胶法改性阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(01): 10-15. |
[3] | 陈洁如, 邱诗苑, 杨青青, 周熠. 基于可调张力装置的芳纶织物交织阻力研究[J]. 纺织学报, 2021, 42(01): 67-72. |
[4] | 李美真, 赵士毅, 冯艳丽, 郭晓卿, 于晓庆. F-12芳纶织物输送带的制备及其性能[J]. 纺织学报, 2020, 41(12): 87-93. |
[5] | 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(07): 67-71. |
[6] | 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97. |
[7] | 李聃阳, 王瑞, 刘星, 张淑洁, 夏兆鹏, 阎若思, 代二庆. 剪切增稠液对不同结构芳纶织物防刺性能的影响[J]. 纺织学报, 2020, 41(03): 106-112. |
[8] | 党丹旸, 崔灵燕, 王亮, 刘雍. 纤维素纳米纤维/ 纳米蒙脱土复合气凝胶制备及其结构与性能[J]. 纺织学报, 2020, 41(02): 1-6. |
[9] | 庄群, 张飞, 杜兆芳, 姜华. 改性芳纶与环氧树脂复合体的制备及其防刺性能[J]. 纺织学报, 2019, 40(12): 98-103. |
[10] | 王璐, 丁笑君, 夏馨, 王虹, 周小红. SiO2气凝胶/芳纶非织造布复合织物的防护功能[J]. 纺织学报, 2019, 40(10): 79-84. |
[11] | 缪特, 张如全, 冯阳. 纳米发泡整理对芳纶过滤材料性能的影响[J]. 纺织学报, 2019, 40(09): 108-113. |
[12] | 吴利伟, 王伟, 林佳弘, 姜茜. 芳纶/超高分子量聚乙烯织物增强聚氨酯夹芯复合材料制备及其力学性能[J]. 纺织学报, 2019, 40(07): 64-70. |
[13] | 莫达杰, 李旭明, 许增慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸阻燃纤维的制备及其性能[J]. 纺织学报, 2019, 40(05): 12-17. |
[14] | 张安莹, 王照颖, 王锐, 董振峰, 魏丽菲, 王德义. 阻燃聚左旋乳酸及其纤维的制备与结构性能[J]. 纺织学报, 2019, 40(04): 7-14. |
[15] | 缪润伍, 金丽华, 魏祺煜, 韩潇, 洪剑寒. 多轴向导电芳纶增强复合材料及其电磁屏蔽性能[J]. 纺织学报, 2019, 40(02): 100-104. |
|