纺织学报 ›› 2020, Vol. 41 ›› Issue (05): 85-93.doi: 10.13475/j.fzxb.20190804409
吴伟1,2, 陈小文1,2, 钟毅1,2,3, 徐红1,2,3, 毛志平1,2,3,4()
WU Wei1,2, CHEN Xiaowen1,2, ZHONG Yi1,2,3, XU Hong1,2,3, MAO Zhiping1,2,3,4()
摘要:
为探究加入硫酸钠后低带液轧-焙-蒸活性染料染色效果更好的原因,通过分子动力学模拟的方法,建立纤维表面染液层模型,研究在有无硫酸钠的条件下焙-蒸过程中体系水分蒸发、染料和离子分布情况,计算了数密度和径向分布函数。结果表明:硫酸钠在低带液轧-焙-蒸染色过程中存在保水作用,且在碱处理后,即纤维素糖环上的羟基变成氧负离子之后,保水作用更明显;硫酸钠的加入产生了纤维素氧负离子-钠离子-硫酸根离子-钠离子的稳定、定向排列的多电位层,能够有效锁住纤维表面的水分,为染料和纤维提供更好的反应环境,而且能够防止染料随着水分子在高温下发生解吸附、泳移以及水解反应。
中图分类号:
[1] | 张战旗, 齐元章, 王德振. 活性染料无盐染色加工技术研究与实践应用[J]. 纺织导报, 2018(12):59-61. |
ZHANG Zhanqi, QI Yuanzhang, WANG Dezhen. Research and practice of salt-free dyeing processing technology with reactive dyes[J]. China Textile Leader, 2018(12):59-61. | |
[2] | 孙铠, 蔡再生, 沈勇. 染整工艺原理: 第3分册[M]. 北京: 中国纺织出版社, 2010: 272-281. |
SUN Kai, CAI Zaisheng, SHEN Yong. Principles of dyeing and finishing process: 3rd vol[M]. Beijing: China Textile & Apparel Press, 2010: 272-281. | |
[3] | 舒大武, 房宽峻, 刘秀明, 等. 活性染料无盐连续轧-蒸与冷轧堆染色效果的比较[J]. 纺织学报, 2018,39(4):77-81. |
SHU Dawu, FANG Kuanjun, LIU Xiuming, et al. Comparison on dyeing effect of reactive dyes by salt-free continuous pad-steam dyeing and cold pad-batch dyeing[J]. Journal of Textile Research, 2018,39(4):77-81. | |
[4] | 舒大武, 房宽峻, 刘秀明, 等. 织物升温速率对活性染料轧-蒸无盐染色的影响[J]. 纺织学报, 2018,39(2):106-111. |
SHU Dawu, FANG Kuanjun, LIU Xiuming, et al. Influence of fabric heating rate on salt-free pad-steam dyeing of reactive dye[J]. Journal of Textile Research, 2018,39(2):106-111. | |
[5] | 房宽峻, 刘曰兴, 舒大武, 等. 活性染料电中性无盐染色理论与应用[J]. 染整技术, 2017,39(12):50-54. |
FANG Kuanjun, LIU Yuexing, SHU Dawu, et al. Theory and application of reactive dye neutral salt free dyeing[J]. Textile Dyeing and Finishing Journal, 2017,39(12):50-54. | |
[6] | 冒晓东. 新型棉织物活性染料低给液染色研究[D]. 上海:东华大学, 2017: 18-43. |
MAO Xiaodong. Research on a novel low add-on technology of dyeing cotton fabric with reactive dyestuff[D]. Shanghai: Donghua University, 2017: 18-43. | |
[7] |
THIAGO C F G, MUNIR S S. Cellulose-builder: a toolkit for building crystalline structures of cellulose[J]. Journal of Computational Chemistry, 2012,33(14):1338-1346.
doi: 10.1002/jcc.22959 |
[8] |
SPOEL D V D, LINDAHL E, HESS B, et al. GROMACS: fast, flexible, and free[J]. Journal of Computational Chemistry, 2005,26(16):1701-1718.
doi: 10.1002/jcc.20291 pmid: 16211538 |
[9] |
CORNELL W D, CIEPLAK P, BAYLY C I, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules[J]. Journal of The American Chemical Society, 1995,117(19):5179-5197.
doi: 10.1021/ja00124a002 |
[10] |
KIRSCHNER K N, YONGYE A B, TSCHAMPEL S M, et al. GLYCAM06: a generalizable biomolecular force field. Carbohydrates[J]. Journal of Computational Chemistry, 2008,29(4):622-655.
doi: 10.1002/jcc.20820 pmid: 17849372 |
[11] |
WANG J, WOLF R M, CALDWELL J W, et al. Development and testing of a general amber force field[J]. Journal of Computational Chemistry, 2004,25(9):1157-1174.
doi: 10.1002/jcc.20035 pmid: 15116359 |
[12] |
LU T, CHEN F. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012,33(5):580-592.
doi: 10.1002/jcc.22885 |
[13] |
BAYLY C I, CIEPLAK P, CORNELL W, et al. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model[J]. The Journal of Physical Chemistry, 1993,97(40):10269-10280.
doi: 10.1021/j100142a004 |
[14] |
KASHEFOLGHETA S, VERDE A V. Developing force fields when experimental data is sparse: AMBER/GAFF-compatible parameters for inorganic and alkyl oxoanions[J]. Physical Chemistry Chemical Physics, 2017,19(31):20593-20607.
doi: 10.1039/c7cp02557b pmid: 28731091 |
[15] | JORGENSEN W L, CHANDRASEKHAR J, MADURA J D, et al. Comparison of simple potential functions for simulating liquid water[J]. The Journal of Chemical Physics, 1983,79(2):926-935. |
[16] |
BUSSI G, DONADIO D, PARRINELLO M. Canonical sampling through velocity rescaling[J]. The Journal of Chemical Physics, 2007,126(1):014101.
pmid: 17212484 |
[17] | EVANS D J, HOLIAN B L. The nose-hoover thermo-stat[J]. The Journal of Chemical Physics, 1985,83(8):4069-4074. |
[18] | HOCKNEY R W, GOEL S P, EASTWOOD J W. Quiet high-resolution computer models of a plasma[J]. Journal of Computational Physics, 1974,14(2):148-158. |
[19] | DARDEN T, YORK D, PEDERSEN L. Particle mesh ewald: an N·log (N) method for Ewald sums in large systems[J]. The Journal of Chemical Physics, 1993,98(12):10089-10092. |
[20] | HESS B, BEKKER H, BERENDSEN H J, et al. LINCS: a linear constraint solver for molecular simulations[J]. Journal of Computational Chemistry, 1997,18(12):1463-1472. |
[21] |
HUMPHREY W, DALKE A, SCHULTEN K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996,14(1):33-38.
pmid: 8744570 |
[1] | 鲁鹏, 洪思思, 林旭, 李慧, 刘国金, 周岚, 邵建中, 柴丽琴. 活性染料/聚苯乙烯复合胶体微球的制备及其在桑蚕丝织物上的结构生色[J]. 纺织学报, 2021, 42(01): 90-95. |
[2] | 李庆, 管斌斌, 王雅, 刘天卉, 张洛红, 樊增禄. 光敏剂敏化Cu-有机骨架对活性深蓝K-R的高效光催化降解[J]. 纺织学报, 2020, 41(10): 87-93. |
[3] | 王纯怡, 吴伟, 王健, 徐红, 毛志平. C.I.分散棕19在超临界CO2及水中溶解性的分子动力学模拟[J]. 纺织学报, 2020, 41(09): 95-101. |
[4] | 丁永生, 代亚敏, 钟毅, 徐红, 毛志平, 张琳萍, 陈支泽. 棉纱线在活性染料皮克林乳液体系中的染色动力学[J]. 纺织学报, 2020, 41(07): 101-108. |
[5] | 张炜, 毛庆楷, 朱鹏, 柴雄, 李惠军. 乙醇/水体系中改性蚕丝织物的活性染料染色动力学和热力学[J]. 纺织学报, 2020, 41(06): 86-92. |
[6] | 王秋平, 毛志平, 钟毅, 徐红, 张琳萍. 平幅轧染中针织物形变对染色的影响[J]. 纺织学报, 2019, 40(11): 94-99. |
[7] | 杨海贞, 房宽峻, 刘秀明, 蔡玉青, 安芳芳, 韩双. 棉织物组织结构对墨滴铺展及颜色性能的影响[J]. 纺织学报, 2019, 40(07): 78-84. |
[8] | 陶开鑫, 俞成丙, 侯颀骜, 吴聪杰, 刘引烽. 基于最小二乘支持向量机的棉针织物活性染料湿蒸染色预测模型[J]. 纺织学报, 2019, 40(07): 169-173. |
[9] | 王阿明, 夏良君, 王运利. 活性红195在中性电解质溶液中的聚集行为[J]. 纺织学报, 2019, 40(04): 77-82. |
[10] | 舒大武 房宽峻 刘秀明 刘曰兴 蔡玉青 门雅静 李付杰. 活性染料无盐连续轧-蒸与冷轧堆染色效果的比较[J]. 纺织学报, 2018, 39(04): 77-81. |
[11] | 安亚洁 李敏 杜长森 田安丽 张奕 付少海. 微量墨滴在蚕丝机织物上的扩散行为[J]. 纺织学报, 2018, 39(04): 87-92. |
[12] | 舒大武 房宽峻 刘秀明 李新禹 刘曰兴 张健飞 张鑫卿. 织物升温速率对活性染料轧-蒸无盐染色的影响[J]. 纺织学报, 2018, 39(02): 106-111. |
[13] | 俞俭 王业师 吕景春 周天池 魏取福. 低温等离子体处理木棉纤维的染色性能[J]. 纺织学报, 2017, 38(12): 88-94. |
[14] | 韩莹莹 孙丽静 钟毅 徐红 毛志平 . 活性染料Pickering乳液非均相浸渍染色[J]. 纺织学报, 2017, 38(11): 79-83. |
[15] | 李静 王晓 邵伟 崔永珠 魏春艳. 改性活性染料对涤纶织物的紫外光引发接枝染色[J]. 纺织学报, 2017, 38(11): 91-96. |
|