纺织学报 ›› 2020, Vol. 41 ›› Issue (06): 61-68.doi: 10.13475/j.fzxb.20190702408

• 纺织工程 • 上一篇    下一篇

自润滑关节轴承衬垫弹性参数的计算

汪久根1(), 郭昊1, 洪玉芳1, 陈芳华2   

  1. 1.浙江大学 机械工程学院, 浙江 杭州 310027
    2.浙江省机电产品质量检测所, 浙江 杭州 310051
  • 收稿日期:2019-07-04 修回日期:2019-12-04 出版日期:2020-06-15 发布日期:2020-06-28
  • 作者简介:汪久根(1962—),男,教授,博士。主要研究方向为摩擦学、仿生机械学、机械设计信息学。E-mail:me_jg@zju.edu.cn
  • 基金资助:
    国家自然科学基金项目(51375436);浙江省重大科技专项子课题资助项目(2016C01G5130970)

Elastic parameters calculation of liners of self-lubricating spherical plain bearings

WANG Jiugen1(), GUO Hao1, HONG Yufang1, CHEN Fanghua2   

  1. 1. Faculty of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
    2. Zhejiang Testing & Inspection Institute for Mechanical and Electrical Products Quality,Hangzhou, Zhejiang 310051, China;
  • Received:2019-07-04 Revised:2019-12-04 Online:2020-06-15 Published:2020-06-28

摘要:

为准确预测自润滑关节轴承衬垫的弹性参数,结合衬垫的压紧预处理过程,建立了修正的衬垫特征体元(RVE)细观几何模型。结合桥联理论建立了相应的轴承衬垫弹性性能分析模型。用解析法分别计算了平纹、斜纹、五枚二飞缎纹3种衬垫的弹性参数。通过与其他实验数据比较得知,平纹衬垫、斜纹衬垫、五枚二飞缎纹衬垫弹性参数计算值与实验值最大相对误差分别为4.76%、5.47%、4.39%。对用于计算不同纤维束弹性常数时,若纤维束中纤维和基体沿轴线方向弹性模量比值较大,则桥联参数α取值比β小,所得结果较为准确。若实验条件允许,可通过对纤维束进行简单拉压剪切实验确定αβ值。

关键词: 织物衬垫, 弹性参数, 细观建模, 桥联模型, 数值计算, 自润滑关节轴承

Abstract:

In order to accurately predict mechanical parameters of self-lubricating spherical plain bearings, the representative volume element mesoscopic geometric model had been modified considering compaction of liner preform. Elastic performance analysis model combined with bridging model had been established. The elastic properties of plain, twill and satin liners were calculated with the analytical method. Compared with experimental data carried by other researchers, the maximum relative errors between theoretical and experimental values are 4.76%, 5.47% and 4.39% respectively. For the bridging parameters used to calculate the elastic constants of different fiber bundles, if the ratio of the elastic modulus of the fibers and the matrix in the axial direction of the fiber bundle is large, using α smaller than β could obtain more accurate results. Values of α and β can be determined by simple tensile and shear tests of the fiber bundles if experimental conditions are adequate.

Key words: fabric liner, elastic parameter, mesoscopic model, bridging model, numerical calculation, self-lubricating spherical plain bearings

中图分类号: 

  • TB3322

图1

平纹、斜纹、缎纹衬垫结构示意图"

图2

透镜形纤维束截面示意图"

图3

平纹衬垫压紧预处理前后结构示意图"

图4

纤维束截面示意图"

图5

平纹衬垫特征单元A-A截面示意图"

图6

衬垫柔度矩阵计算流程"

图7

纤维束弯曲部分示意图"

表1

平纹和缎纹衬垫材料弹性参数"

弹性常数 PTFE 芳纶 酚醛树脂
E11 0.75 6.70 2.88
E22 0.75 6.70 2.88
G12 0.28 2.69 1.01
G23 0.28 2.69 1.01
u12 0.30 0.23 0.42

表2

平纹计算结果与实验比对"

弹性参数 计算值/GPa 实验值/GPa 相对误差/%
E11 1.97 1.98 0.51
E22 1.97 1.98 0.51
G12 0.66 0.63 4.76

表3

文献[9]中斜纹衬垫纤维束几何参数"

类型 宽度/mm 厚度/mm 间隙/mm 纱线填充系数 RVE厚度/mm
PTFE 2.120 0.250 0.029 3 0.700 0.405
芳纶 2.120 0.150

表4

文献[9]中斜纹衬垫材料弹性参数"

类型 E11 E22 G12 G23 u12
PTFE 3.20 3.20 1.23 1.23 0.35
芳纶 133.00 133.00 49.20 49.20 0.35
酚醛树脂 2.88 2.88 1.01 1.01 0.42

表5

斜纹计算结果与实验比对"

弹性参数 计算值/GPa 实验值/GPa 相对误差/%
E11 29.13 29.90 2.58
E22 8.98 9.50 5.47

表6

5/2缎纹计算结果与实验比对"

弹性参数 计算值/GPa 实验值/GPa 相对误差/%
E11 3.09 2.96 4.39
E22 3.23 3.23 <0.01
G12 1.11 1.09 1.83
[1] KIM Byung Chul, LEE Dai Gil. Endurance and performance of a composite spherical bearing[J]. Composite Structures, 2008,87(1):71-79.
[2] GERMANEAU A, PEYRUSEIGT F, MISTOU S, et al. 3D mechanical analysis of aeronautical plain bearings: validation of a finite element model from measurement of displacement fields by digital volume correlation and optical scanning tomography[J]. Optics and Lasers in Engineering, 2010,48(6):676-683.
[3] 杨育林, 祖大磊, 黄世军. 自润滑关节轴承现状及发展[J]. 轴承, 2009(1):58-61.
YANG Yulin, ZU Dalei, HUANG Shijun. Status and development of self-lubricating spherical plain bearings[J]. Bearing, 2009(1):58-61.
[4] 杨育林, 谷大鹏, 齐效文, 等. 织物自润滑衬垫的研究现状与展望[J]. 轴承, 2010(11):50-54.
YANG Yulin, GU Dapeng, QI Xiaowen, et al. Research status and prospect of fabric self-lubricating liner[J]. Bearing, 2010(11):50-54.
[5] HUANG Z M. Fatigue life prediction of a woven fabric composite subjected to biaxial cyclic loads[J]. Composites Part A (Applied Science and Manufacturing), 2002,33(2):253-266.
[6] 左中鹅, 王瑞, 徐磊. 基于有限单元法的平纹织物复合材料强度预测: 1. RVE的有限元模型[J]. 纺织学报, 2009,30(12):45-49.
ZUO Zhong'e, WANG Rui, XU Lei. Mechanical strength prediction of plain woven fabric composite: 1. finite element model of composite RVE[J]. Journal of Textile Research, 2009,30(12):45-49.
[7] 刘召磊, 沈雪瑾. 自润滑关节轴承斜纹织物衬垫弹性性能的分析模型[J]. 机械工程材料, 2011,35(5):96-100.
LIU Zhaolei, SHEN Xuejin. Analysis model of the elastic properties of twill woven fabric liner of spherical plain bearing with self-lubricating[J]. Mechanical Engineering Materials, 2011,35(5):96-100.
[8] 王东宁, 李嘉禄, 焦亚男. 平纹织物三维细观几何模型和织物防弹实验的有限元模拟[J]. 材料工程, 2013(9):69-74,78.
WANG Dongning, LI Jialu, JIAO Yanan. 3D meso-geometrical model of plain weave fabric and finite element modeling under ballistic impact[J]. Journal of Materials Engineering, 2013(9):69-74,78.
[9] 陈继刚, 薛亚红, 邱红亮. 芳纶/聚四氟乙烯纤维织物衬垫力学建模与性能计算[J]. 纺织学报, 2015,36(1):82-87.
CHEN Jigang, XUE Yahong, QIU Hongliang. Mechanics modeling and performance calculation of aramid/polytetrafluoroethene fabric liner[J]. Journal of Textile Research, 2015,36(1):82-87.
[10] LU J, QIU M, LI Y. Wear models and mechanical analysis of PTFE/Kevlar fabric woven liners used in radial spherical plain bearings[J]. Wear, 2016,364/365:57-72.
[11] TAN P, TONG L, STEVEN G P. Modelling for predicting the mechanical properties of textile composites: a review[J]. Composites Part A: Applied Science and Manufacturing, 1997,28(11):903-922.
[12] HUANG Z. Strength of fibrous composites[M]. Hangzhou: Zhejiang University Press, 2011: 1-32.
[13] 张春春, 王艳超, 黄争鸣. 横观各向同性基体复合材料的等效弹性常数[J]. 应用数学和力学, 2018,39(7):750-765.
ZHANG Chunchun, WANG Yanchao, HUANG Zhengming. Effective elastic properties of transversely isotropic matrix based composites[J]. Applied Mathematics and Mechanics, 2018,39(7):750-765.
[14] LEE S K, BYUN J H, HONG S H. Effect of fiber geometry on the elastic constants of the plain woven fabric reinforced aluminum matrix composites[J]. Materials Science & Engineering A, 2003,347(1/2):346-358.
[15] CHEN Z R, YE L, KRUCKENBERG T. A micromechanical compaction model for woven fabric preforms: part I: single layer[J]. Composites Science and Technology, 2006,66(16):3254-3262.
[16] KHAN K A, UMER R. Modeling the viscoelastic compaction response of 3D woven fabrics for liquid composite molding processes[J]. Journal of Reinforced Plastics and Composites, 2017,36(18):1299-1315.
[17] WEI K, WANG Y, YANG X. Viscoelastic modeling of responses in the whole compaction process for woven fiber reinforcements[J]. International Journal of Applied Mechanics, 2018,10(2):1-18.
[18] SKF. AMPEP high performance plain bearings [DB/OL]. https://www.skf.com/binary/tcm:12-99107/0901d1968020a6fc-13089EN-_tcm_12-99107.pdf, 2012-09.
[19] TONG L, MOURITZ A P, BANNISTER M K. 3D fibre reinforced polymer composites[M]. Amsterdam:Elsevier Science, 2002: 219-236.
[20] 黄争鸣. 复合材料细观力学引论[M]. 北京: 科学出版社, 2004: 1-21.
HUANG Zhengming. An introduction to mesomechanics of composite material[M]. Beijing: Science Press, 2004: 1-21.
[21] SHEN X, GAO P, LIU Z, et al. Elastic properties of the fabric liner and their influence on the wear depth of the spherical plain bearing[J]. Journal of Nanomaterials, 2014(1):1-7.
[1] 姬长春, 张开源, 王玉栋, 王新厚. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(08): 175-180.
[2] 张荣 冯志华 陆庆 陈晓明. 含纱疵纱线的气流引纬牵引特性分析[J]. 纺织学报, 2017, 38(11): 131-136.
[3] 王占山 吕利叶 张佳丽 杨育林 张芳芳. 聚四氟乙烯/芳纶破斜纹织物衬垫拉伸性能数值仿真[J]. 纺织学报, 2016, 37(07): 71-76.
[4] 辛三法 王新厚 胡守忠. 微纳米纤维的熔喷制作工艺[J]. 纺织学报, 2015, 36(07): 7-11.
[5] 张忠胜 刘晓艳 于伟东. 纺织纤维的弯曲疲劳理论及其应用[J]. 纺织学报, 2013, 34(5): 152-0.
[6] 薛文良;魏孟媛;陈革;程隆棣. 喷气织机主喷嘴内部流场的数值计算[J]. 纺织学报, 2010, 31(4): 124-127.
[7] 邹专勇;俞建勇;薛文良;刘丽芳;程隆棣. 喷气涡流纺工艺参数对气流场影响的数值计算[J]. 纺织学报, 2008, 29(4): 32-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!