纺织学报 ›› 2020, Vol. 41 ›› Issue (06): 174-182.doi: 10.13475/j.fzxb.20190504509

• 综合述评 • 上一篇    下一篇

静电纺多级结构空气过滤材料的研究进展

洪贤良1,2(), 陈小晖1, 张建青1, 刘俊杰3,4, 黄晨2, 丁伊可1, 洪慧1   

  1. 1.浙江金海环境技术股份有限公司,浙江 绍兴 311817
    2.东华大学 纺织学院,上海 201620
    3.天津大学 环境科学与工程学院, 天津 300072
    4.天津大学 室内空气环境质量控制天津市重点实验室, 天津 300072
  • 收稿日期:2019-05-15 修回日期:2020-01-16 出版日期:2020-06-15 发布日期:2020-06-28
  • 作者简介:洪贤良(1968—),男,高级工程师。主要研究方向为高效空气过滤材料。E-mail:hxliang@goldensea.cn
  • 基金资助:
    国家重点研发计划项目(2018YFC0705202);上海市“晨光计划”资助项目(14CG34)

Research progress in preparation of hierarchically structured air filter materials by electrospinning

HONG Xianliang1,2(), CHEN Xiaohui1, ZHANG Jianqing1, LIU Junjie3,4, HUANG Chen2, DING Yike1, HONG Hui1   

  1. 1. Zhejiang Goldensea Environment Technology Co.,Ltd., Shaoxing, Zhejiang 311817, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
    3. College of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
    4. Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin University, Tianjin 300072, China
  • Received:2019-05-15 Revised:2020-01-16 Online:2020-06-15 Published:2020-06-28

摘要:

为促进静电纺纳米纤维在空气过滤领域中的应用,开发性能更加优异的新型纳米纤维空气过滤膜,以近年来国内外静电纺丝技术制备多级结构纳米空气过滤材料的相关研究为基础,综述了静电纺制备具有微纳米凸起、纳米蛛网、层层复合、多孔、刺状、树枝状及核壳等结构空气过滤材料的最新研究进展,分析和讨论了多级结构微纳米空气过滤材料的制备方法,指出了现有研究中存在的不足,并对未来的发展方向进行了总结和展望。认为多级结构可有效实现过滤材料高效率、低阻力、高强度、阻燃等的功能化,相较于传统的纳米纤维过滤材料具有更好的应用前景。

关键词: 静电纺丝, 多级结构, 纳米纤维, 空气过滤材料

Abstract:

This review paper was written to promote applications of electrospun nanofibers in the field of air filtration, and to report development of new nanofiber air filtration membranes with more performance advantages. The latest progress in the preparation of air filtration materials was reviewed in the areas of micro-nano-bulge, nano-spider web, layer-by-layer composite, porous, spiny, tree-like and core-shell structures by electro-spinning. The preparation methods of hierarchical micro-nano air filtration materials were analyzed, discussed and critically commented. While the progress and shortcomings of existing work were pointed out. This paper also proposed future development directions for this research area. The review concludes that the hierarchical structure is effective in functionalizing filtration materials (such as high efficiency, low resistance, high strength, flame retardant, and so on) and has better application prospects than traditional nanofiber filtration materials.

Key words: electro-spinning, hierarchical structure, nanofiber, air filtration material

中图分类号: 

  • TQ028.2

图1

具有纳米蛛网结构复合膜SEM照片(×20 000)"

图2

交叉铺层制备的纤维平行、垂直和60°排列的复合膜SEM照片(×3 000)"

图3

静电纺丝制备CNT/纳米纤维复合过滤材料SEM照片"

图4

PLA多孔纤维SEM照片"

图5

多孔珠状纳米纤维膜SEM照片"

图6

刺状结构碳纳米纤维膜SEM照片"

图7

静电纺丝过程射流劈裂高速摄影图"

图8

具有树枝状结构的PVDF纳米纤维膜"

[1] ZAN G, WU Q. Biomimetic and bioinspired synjournal of nanomaterials/nanostructures.[J]. Advanced Materials, 2016,28(11):2099-2147.
doi: 10.1002/adma.201503215 pmid: 26729639
[2] LIU Y, LUO D, WANG T. Hierarchical structures of bone and Bioinspired bone tissue engineering[J]. Small, 2016,12(34):4611-4632.
pmid: 27322951
[3] FENG L, LI S H, LI Y S, et al. Super-hydrophobic surfaces: from natural to artificial[J]. Advanced Materials, 2003,14(24):1857-1860.
[4] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997,202(1):1-8.
[5] NEINHUIS C, BARTHLOTT W. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997,79(6):667-677.
[6] 康卫民, 范兰兰, 邓南平, 等. 静电纺丝多孔碳纳米纤维制备与应用研究进展[J]. 纺织学报, 2017(11):173-181.
KANG Weimin, FAN Lanlan, DENG Nanping, et al. Progress in preparation and application of electrospinning porous carbon nanofibers[J]. Journal of Textile Research, 2017(11):173-181.
[7] YANG G, LI X, HE Y, et al. From nano to micro to macro: electrospun hierarchically structured polymeric fibers for biomedical applications[J]. Progress in Polymer Science, 2018,81:80-113.
[8] WU J, WANG N, ZHAO Y, et al. Electrospinning of multilevel structured functional micro-/nanofibers and their applications[J]. Journal of Materials Chemistry A, 2013,1(25):7290-7305.
[9] 吴大诚, 杜仲良, 高绪珊. 纳米纤维[M]. 北京: 化学工业出版社, 2003: 42-43.
WU Dacheng, DU Zhongliang, GAO Xushan. Nanofibers[M]. Beijing: Chemical Industry Press, 2003: 42-43.
[10] 丁彬, 俞建勇. 静电纺丝与纳米纤维[M]. 北京: 中国纺织出版社, 2011: 8-20.
DING Bin, YU Jianyong. Electrospinning and nano-fiber[M]. Beijing: China Textile & Apparel Press, 2011: 8-20.
[11] SRIDHAR R, LAKSHMINARAYANAN R, MADHAIYAN K, et al. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals[J]. Chemical Society Reviews, 2015,44(3):790-814.
pmid: 25408245
[12] PARK H S, PARK Y O. Filtration properties of electrospun ultrafine fiber webs[J]. Korean Journal of Chemical Engineering, 2005,22(1):165-172.
[13] SAWHNEY A, CONDON B, SINGH K, et al. Modern applications of nanotechnology in textiles[J]. Textile Research Journal, 2008,78(8):731-739.
[14] 冯雪, 汪滨, 王娇娜, 等. 空气过滤用聚丙烯腈静电纺纤维膜的制备及其性能[J]. 纺织学报, 2017,38(4):6-11.
FENG Xue, WANG Bin, WANG Jiaona, et al. Preparation and properties of polyacrylonitrile electrospun fiber membrane for air filtration[J]. Journal of Textile Research, 2017,38(4):6-11.
[15] ZHANG Q, WELCH J, PARK H, et al. Improvement in nanofiber filtration by multiple thin layers of nanofiber mats[J]. Journal of Aerosol Science, 2010,41(2):230-236.
[16] 赵伟伟, 汪滨, 王娇娜, 等. 静电纺聚酰胺6纳米纤维膜的制备及其性能[J]. 纺织学报, 2017,38(3):6-12.
ZHAO Weiwei, WANG Bin, WANG Jiaona, et al. Preparation and properties of electrospun polyamide 6 nanofiber membranes[J]. Journal of Textile Research, 2017,38(3):6-12.
[17] ZHANG P, WAN D, ZHANG Z, et al. RGO-functionalized polymer nanofibrous membrane with exceptional surface activity and ultra-low airflow resistance for PM2.5 filtration[J]. Environmental Science: Nano, 2018,5(8):1813-1820.
[18] WAN H, WANG N, YANG J, et al. Hierarchically structured polysulfone/titania fibrous membranes with enhanced air filtration performance[J]. Journal of Colloid and Interface Science, 2014,417:18-26.
pmid: 24407655
[19] YUN K M, SURYAMAS A B, ISKANDAR F, et al. Morphology optimization of polymer nanofiber for applications in aerosol particle filtration[J]. Separation and Purification Technology, 2010,75(3):340-345.
[20] GAO H, YANG Y, AKAMPUMUZA O, et al. Low filtration resistance three-dimensional composite membrane fabricated via free surface electrospinning for effective PM2.5 capture[J]. Environmental Science Nano, 2017,4(4):864-875.
[21] KIRSH V A. The effect of van der Waals' forces on aerosol filtration with fibrous filters[J]. Colloid Journal, 2000,62(6):714-720.
[22] LI P, WANG C, ZHANG Y, et al. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes[J]. Small, 2014,10(22):4543-4561.
doi: 10.1002/smll.201401553 pmid: 25288476
[23] DING B, LI C R, MIYAUCHI Y, et al. Formation of novel 2D polymer nanowebs via electrospinning[J]. Nanotechnology, 2006,17(15):3685-3694.
[24] WANG X, DING B, YU J, et al. Electro-netting: fabrication of two-dimensional nano-nets for highly sensitive trimethylamine sensing[J]. Nanoscale, 2011,3(3):911-915.
doi: 10.1039/c0nr00783h pmid: 21152536
[25] 汪小亮, 冯雪为, 潘志娟. 双喷静电纺聚酰胺6/聚酰胺66纳米蛛网纤维膜的制备及其空气过滤性能[J]. 纺织学报, 2015,36(11):6-11.
WANG Xiaoliang, FENG Xuewei, PAN Zhijuan. Preparation of PA6/PA66 nano-net membranes by double-needle electrospinning and its air filtration properties[J]. Journal of Textile Research, 2015,36(11):6-11.
[26] AYUTSEDE J, GANDHI M, SUKIGARA S, et al. Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process[J]. Biomacromolecules, 2006,7(1):208-214.
pmid: 16398517
[27] BARAKAT N A M, KANJWAL M A, SHEIKH F A, et al. Spider-net within the N6, PVA and PU electrospun nanofiber mats using salt addition: novel strategy in the electrospinning process[J]. Polymer, 2009,50(18):4389-4396.
[28] WANG X F, DING B, YU J Y, et al. Quartz crystal microbalance-based nanofibrous membranes for humidity detection: theoretical model and experimental verification[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2010,11(7):509-516.
[29] WANG N, WANG X, DING B, et al. Tunable fabrication of three-dimensional polyamide-66 nano-fiber/nets for high efficiency fine particulate filtra-tion[J]. Journal of Materials Chemistry, 2011,22(4):1445-1452.
[30] WANG X, DING B, YU J, et al. Large-scale fabrication of two-dimensional spider-web-like gelatin nano-nets via electro-netting[J]. Colloids and Surfaces B: Biointerfaces, 2011,86(2):345-352.
pmid: 21550787
[31] LIU B, ZHANG S, WANG X, et al. Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration[J]. Journal of Colloid & In-terface Science, 2015,457:203-211.
[32] 汪策. 纳米纤维多孔膜的制备及其在空气过滤中的应用[D]. 上海:东华大学, 2015: 29-45.
WANG Ce. Preparation and characterization of composite porous nanofibrous membranes for air filtration[D]. Shanghai: Donghua University, 2015: 29-45.
[33] ZHANG S, LIU H, YIN X, et al. Tailoring mechanically robust poly(m-phenylene isophthalamide) nanofiber/nets for ultrathin high-efficiency air filter[J]. Scientific Reports, 2017,7:40550.
pmid: 28074880
[34] ZHANG Q, WELCH J, PARK H, et al. Improvement in nanofiber filtration by multiple thin layers of nanofiber mats[J]. Journal of Aerosol Science, 2010,41(2):230-236.
[35] KAO T H, SU S K, SU C I, et al. Polyacrylonitrile microscaffolds assembled from mesh structures of aligned electrospun nanofibers as high-efficiency particulate air filters[J]. Aerosol Science and Technology, 2016,50(6):615-625.
[36] ZHANG S, TANG N, CAO L, et al. Highly integrated polysulfone/polyacrylonitrile/polyamide-6 air filter for multilevel physical sieving airborne particles[J]. ACS Applied Materials & Interfaces, 2016,8(42):29062-29072.
pmid: 27700022
[37] BACSA R R, LAURENT C, PEIGNEY A, et al. High specific surface area carbon nanotubes from catalytic chemical vapor deposition process[J]. Chemical Physics Letters, 2000,323(5):566-571.
[38] ZHANG R, WEN Q, QIAN W, et al. Superstrong ultralong carbon nanotubes for mechanical energy sto-rage[J]. Advanced Materials, 2011,23(30):3387-3391.
doi: 10.1002/adma.201100344 pmid: 21671453
[39] JIANG K, WANG J, LI Q, et al. Superaligned carbon nanotube arrays, films, and yarns: a road to applications[J]. Advanced Materials, 2011,23(9):1154-1161.
doi: 10.1002/adma.201003989 pmid: 21465707
[40] YILDIZ O, STANO K, FARAJI S, et al. High performance carbon nanotube-polymer nanofiber hybrid fabrics[J]. Nanoscale, 2015,7(40):16744-16754.
doi: 10.1039/c5nr02732b pmid: 26399497
[41] 王倩楠. 高温气体过滤材料的制备及过滤性能的研究[D]. 上海:东华大学, 2017: 89-104.
WANG Qiannan. Synthesis and filtration properties of hot gas filters for removal of ultrafine particles[D]. Shanghai: Donghua University, 2017: 89-104.
[42] 刘呈坤, 贺海军, 孙润军, 等. 静电纺制备多孔纳米纤维材料的研究进展[J]. 纺织学报, 2017,38(3):168-173.
LIU Chengkun, HE Haijun, SUN Runjun, et al. Research progress in preparation of porous nanofiber materials by electrospinning[J]. Journal of Textile Research, 2017,38(3):168-173.
[43] CASPER C L, STEPHENS J S, TASSI N G, et al. Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process[J]. Macromolecules, 2004,37(2):573-578.
doi: 10.1021/ma0351975
[44] MA G, YANG D, NIE J. Preparation of porous ultrafine polyacrylonitrile (PAN) fibers by electrospinning[J]. Polymers for Advanced Technologies, 2009,20(2):147-150.
[45] YANG Y, CENTRONE A, CHEN L, et al. Highly porous electrospun polyvinylidene fluoride (PVDF)-based carbon fiber[J]. Carbon, 2011,49(11):3395-3403.
[46] GUPTA A, SAQUING C D, AFSHARI M, et al. Porous nylon-6 fibers via a novel salt-induced electrospinning method[J]. Macromolecules, 2008,42(3):709-715.
[47] 王哲, 潘志娟. 静电纺聚乳酸纤维的孔隙结构及其空气过滤性能[J]. 纺织学报, 2014,35(11):6-12.
WANG Zhe, PAN Zhijuan. Pore structure and air filtration performance of electrospun polylactic acid fiber[J]. Journal of Textile Research, 2014,35(11):6-12.
[48] WANG Z, ZHAO C, PAN Z. Porous bead-on-string poly(lactic acid) fibrous membranes for air filtra-tion[J]. Journal of Colloid & Interface Science, 2015,441:121-129.
pmid: 25499733
[49] 王哲. 多级结构微纳米纤维的结构调控及其空气过滤性能[D]. 苏州:苏州大学, 2017: 86-104.
WANG Zhe. Structure regulation of herarchical micro-/nano-scale fibers and their performance of air fitra-tion[D]. Suzhou: Soochow University, 2017: 86-104.
[50] ZHONG L, WANG T, LIU L, et al. Ultra-fine SiO2 nanofilament-based PMIA: a double network membrane for efficient filtration of PM particles[J]. Separation and Purification Technology, 2018,202:357-364.
[51] YARIN A L, KATAPHINAN W, RENEKER D H. Branching in electrospinning of nanofibers[J]. Journal of Applied Physics, 2005,98(6):064501.
[52] 厉宗洁. 静电纺聚偏氟乙烯多尺度树枝结构纳米纤维的制备及其应用研究[D]. 天津:天津工业大学, 2017: 23-40.
LI Zongjie. Preparation and application of electrospun polyvinylidene fluoride multi-scale dendritic nano-fibers[D]. Tianjin: Tiangong Polytechnic University, 2017: 23-40.
[53] 程博闻, 高鲁, 邓南平, 等. 静电纺树枝状聚乳酸纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2018,39(12):139-144.
CHENG Bowen, GAO Lu, DENG Nanping, et al. Preparation and filtration properties of electrospun dendritic polylactic acid nanofiber membranes[J]. Journal of Textile Research, 2018,39(12):139-144.
[54] LI Z, KANG W, ZHAO H, et al. Fabrication of a polyvinylidene fluoride tree-like nanofiber web for ultra high performance air filtration[J]. RSC Advances, 2016,6(94):91243-91249.
[55] BAZILEVSKY A V, YARIN A L, MEGARIDIS C M. Co-electrospinning of core-shell fibers using a single-nozzle technique[J]. Langmuir, 2007,23(5):2311-2314.
doi: 10.1021/la063194q pmid: 17266345
[56] SUN Z, ZUSSMAN E, YARIN A L, et al. Compound core-shell polymer nanofibers by co-electrospinning[J]. Advanced Materials, 2003,15(22):1929-1932.
[57] LIU K, LIU C, HSU P C, et al. Core-shell nanofibrous materials with high particulate matter removal efficiencies and thermally triggered flame retardant properties[J]. ACS Central Science, 2018,4(7):894-898.
doi: 10.1021/acscentsci.8b00285 pmid: 30062118
[1] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[2] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[3] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[4] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[5] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[6] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/ FeCl3 复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[7] 孙倩, 阚燕, 李晓强, 高德康. 聚丙烯腈/氯化钴纳米纤维比色湿度传感器的制备及其性能[J]. 纺织学报, 2020, 41(11): 27-33.
[8] 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26.
[9] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[10] 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18.
[11] 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19.
[12] 段方燕, 王闻宇, 金欣, 牛家嵘, 林童, 朱正涛. 淀粉纤维的成形及其载药控释研究进展[J]. 纺织学报, 2020, 41(10): 170-177.
[13] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[14] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[15] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!