纺织学报 ›› 2020, Vol. 41 ›› Issue (07): 1-8.doi: 10.13475/j.fzxb.20190900108

• 纤维材料 •    下一篇

制备Lyocell纤维用纤维素浆粕的碱性酶处理工艺

元伟1, 姚勇波2, 张玉梅1(), 王华平1   

  1. 1.东华大学 材料科学与工程学院, 上海 201620
    2.嘉兴学院 材料与纺织工程学院, 浙江 嘉兴 314001
  • 收稿日期:2019-09-02 修回日期:2020-03-04 出版日期:2020-07-15 发布日期:2020-07-23
  • 通讯作者: 张玉梅
  • 作者简介:元伟(1982—),男,博士生。主要研究方向为纤维素溶解与纺丝。
  • 基金资助:
    国家自然科学基金项目(51773032)

Alkaline enzyme treatment process for preparation of Lyocell cellulose pulp

YUAN Wei1, YAO Yongbo2, ZHANG Yumei1(), WANG Huaping1   

  1. 1. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2. College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
  • Received:2019-09-02 Revised:2020-03-04 Online:2020-07-15 Published:2020-07-23
  • Contact: ZHANG Yumei

摘要:

为提高Lyocell纤维制备过程中纤维素的溶解效率和溶液稳定性,分别改变碱性酶处理Lyocell纤维用纤维素浆粕的时间和用量,研究其对浆粕相对分子质量和可及度的影响,并对处理工艺进行优化。结果表明:酶处理后纤维素晶型没有受到破坏,仍是典型的纤维素I型构象;当酶用量为4 000 mL/t,增加处理时间至60 min时,纤维素浆粕的聚合度降为430并趋于稳定;当处理时间为60 min,增加酶的用量至2 000 mL/t时,纤维素浆粕的聚合度由520降低至约430,相对分子质量分布变窄;经过纤维素酶处理后纤维素浆粕的可及表面积有所增加,但晶体结构未发生变化,纤维素酶主要是作用于纤维素分子的无定形区和结晶表面较差有序部分。

关键词: 纤维素酶, 纤维素浆粕, Lyocell纤维, 碱性酶, 相对分子质量分布, 晶体结构

Abstract:

In order to improve the dissolving efficiency and solution stability of cellulose during the preparation of Lyocell fiber, the alkaline enzyme treatment time and dosage with cellulose pulp were experimented on, and the changes of relative molecular weight and accessible properties of the pulp were studied. The results show that after enzyme treatment, the crystalline form of cellulose is not destroyed, remaining to be a typical cellulose I-type conformation. When the enzyme dosage is set to 4 000 mL/t and the enzyme treatment time increases, the polymerization degree decreases to 430 and tends to be stable, as the enzyme treatment time is more than 60 min. When the enzyme treatment time is set to 60 min and the enzyme dosage increased to 2 000 mL/t, the polymerization degree of cellulose pulp reduces from 520 to about 430, and the relative molecular weight distribution reduces. It is found that the accessible surface area of cellulase pulp treated by cellulose increases, but the crystal structure remains the same. Cellulose mainly acts on the amorphous area in cellulose molecules and the poorly ordered part of crystalline surface.

Key words: cellulase enzyme, cellulose pulp, Lyocell fiber, alkaline enzyme, relative molecular weight distribution, crystal structure

中图分类号: 

  • TQ341.5

图1

酶处理时间和用量对纤维素浆粕回潮率的影响"

图2

酶处理时间和用量对纤维素浆粕含水率的影响"

图3

经不同时间和不同用量酶处理后浆粕的红外光谱图"

表1

酶处理时间对浆粕脱水热焓值的影响"

酶处理时间/min 热焓值/ (J·g-1)
0 123.0
15 128.1
30 132.3
45 132.4
60 133.4
90 133.6
120 133.7

图4

酶用量(a)和酶处理时间(b)对浆粕聚合度的影响"

表2

酶处理时间对纤维素浆粕还原糖质量分数的影响"

酶处理时间/min 还原糖质量分数/%
15 0.39
30 0.50
45 0.60
60 0.62
90 0.61
120 0.62

图5

酶用量对浆粕分子质量分布的影响"

表3

酶用量对纤维素浆粕相对分子质量的影响"

酶用量/
(mL·t-1)
平均数均
分子量/104
平均重均
分子量/105
PDI
0 3.30 1.47 4.47
500 3.28 1.16 3.52
1 000 3.24 1.13 3.49
2 000 3.17 1.06 3.36
4 000 3.38 1.07 3.18

表4

纤维素浆粕经过不同时间酶处理后的晶面间距和结晶度变化"

酶处理
时间/min
晶面间距/nm 结晶度/
%
(11ˉ0) (110) (012) (020) (103) (004)
0 0.588 0.537 0.433 0.393 0.318 0.260 81
15 0.589 0.538 0.432 0.393 0.318 0.260 79
30 0.591 0.536 0.433 0.393 0.318 0.260 80
45 0.587 0.537 0.432 0.393 0.318 0.260 80
60 0.589 0.535 0.433 0.393 0.319 0.260 79
90 0.589 0.537 0.432 0.394 0.319 0.260 81
120 0.587 0.538 0.431 0.393 0.319 0.260 81

表5

纤维素浆粕经过不同用量的酶处理后的晶面间距和结晶度变化"

酶用量/
(mL·t-1)
晶面间距/nm 结晶度/
%
(11ˉ0) (110) (012) (020) (103) (004)
0 0.588 0.537 0.433 0.393 0.318 0.260 81
500 0.588 0.537 0.433 0.393 0.319 0.260 79
1 000 0.587 0.537 0.433 0.393 0.318 0.260 80
2 000 0.586 0.536 0.433 0.393 0.318 0.260 80
4 000 0.589 0.537 0.432 0.393 0.319 0.260 79

图6

经不同用量和时间酶处理后纤维素浆粕的固体核磁曲线"

表6

酶用量对纤维素浆粕各结晶结构占比的影响"

酶用量/
(mL·t-1)
占比/%
结晶表面较好
有序结构
表面较差有序
以及无序结构
结晶内部有序
结构
0 9.6 26.0 64.4
500 10.1 25.3 64.6
1 000 10.2 23.6 66.2
2 000 10.5 22.7 66.8
4 000 11.4 22.0 66.6

表7

酶处理时间对纤维素浆粕各结晶结构占比的影响"

酶处理
时间/min
占比/%
结晶表面较好
有序结构
表面较差有序
以及无序结构
结晶内部
有序结构
0 9.6 26.0 64.4
15 9.8 24.9 65.3
30 10.4 24.0 65.6
45 10.7 23.0 66.3
60 11.7 21.9 66.4
90 12.0 21.7 66.3
120 11.8 21.8 66.4
[1] WOODINGS C R. The development of advanced cellulosic fibres[J]. International Journal of Biological Macromolecules, 1995,17(6):305-309.
doi: 10.1016/0141-8130(96)81836-8 pmid: 8789330
[2] KLEMM D, HEUBLEIN B, FINK H P, et al. Cellulose: fascinating biopolymer and sustainable raw material[J]. Angewandte Chemie International Edition, 2005,44:3358-3393.
doi: 10.1002/anie.200460587 pmid: 15861454
[3] FINK H P, GANSTER J, LEHMANN A. Progress in cellulose shaping: 20 years industrial case studies at fraunhofer iap[J]. Cellulose, 2014,21(1):31-51.
doi: 10.1007/s10570-013-0137-7
[4] STRUNK P, LINDGREN A, ELIASSON B, et al. Chemical changes of cellulose pulp in the processing to viscose dope[J]. Cellulose Chemistry and Technology, 2012,46(9/10):559-569.
[5] PEREPELKIN K E. Lyocell fibres based on direct dissolution of cellulose in N-methylmorpholine N-oxide: development and prospects[J]. Fibre Chemistry, 2007,39(2):163-172.
[6] ZHANG S, CHEN C, DUAN C, et al. Regenerated cellulose by the lyocell process, a brief review of the process and properties[J]. Bioresources, 2018,13(2):1-16.
[7] DONG B K, JAMES J P, SEONG M J, et al. Dry jet-wet spinning of cellulose/N-methylmorpholine N-oxide hydrate, solutions and physical properties of Lyocell fibers[J]. Textile Research Journal, 2005,75(4):331-341.
[8] CYRIL C, PATRICK N. Swelling and dissolution mechanisms of regenerated Lyocell cellulose fibers[J]. Cellulose, 2011,18(1):1-15.
[9] CHANZY H, PAILLET M, HAGEGE R. Spinning of cellulose from N-methyl morpholine N-oxide in the presence of additives[J]. Polymer, 1990,31(3):400-405.
[10] MI K Y, MOHAMMAD S R, IK M K, et al. Physical properties and fibrillation tendency of regenerated cellulose fiber dry jet-wet spun from high-molecular weight cotton linter pulp/NMMO solution[J]. Fibers and Polymers, 2015,16(8):1618-1628.
doi: 10.1007/s12221-015-5313-y
[11] KYOUNG H C, AH R K, BYOUNG U C. Effects of alkali swelling and beating treatments on properties of kraft pulp fibers[J]. BioResources, 2016,11(2):3769-3782.
[12] HELENA H, PER A. Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material[J]. Cellulose, 2005,12(2):177-183.
doi: 10.1007/s10570-004-1038-6
[13] SCHLEICHER H, DANIELS C, PHILIPP B. Changes of cellulose accessibility to reactions in alkaline medium by activation with ammonia[J]. Journal of Polymer Science Polymer Symposia, 1974,47(1):251-260.
[14] TAKASHI Y, TOSHIHIKO M, MASAYOSHI S, et al. Characterisation of cellulose treated by the steam explosion method: part 1: influence of cellulose resources on changes in morphology, degree of polymerisation, solubility and solid structure[J]. British Polymer Journal, 1990,22(1):73-83.
[15] TIAN C, ZHENG L, MIAO Q, et al. Improving the reactivity of kraft-based dissolving pulp for viscose rayon production by mechanical treatments[J]. Cellulose, 2014,21(5):3647-3654.
[16] GAO P. Research progress in the mechanism of cellulase degradation and the molecular structure and function of cellulase[J]. Progress in Natural Science, 2003,13(1):21-29.
[17] ANN C E, MONICA E, GUNNAR H. Improved accessibility and reactivity of dissolving pulp for the viscose process: pretreatment with monocomponent endoglucanase[J]. Biomacromolecules, 2006,7(6):2027-2031.
pmid: 16768429
[18] GUNNAR H, MARIA C, ROLAND A. Monocomponent endoglucanase treatment increases the reactivity of softwood sulphite dissolving pulp[J]. Journal of Industrial Microbiology and Biotechnology, 2005,32(5):211-214.
doi: 10.1007/s10295-005-0220-7 pmid: 15871037
[19] MIAO Q, CHEN L, HUANG L, et al. A process for enhancing the accessibility and reactivity of hardwood kraft-based dissolving pulp for viscose rayon production by cellulase treatment[J]. Bioresource Technology, 2014,154:109-113.
pmid: 24384317
[20] MIAO Q, TIAN C, CHEN L, et al. Combined mechanical and enzymatic treatments for improving the fock reactivity of hardwood kraft-based dissolving pulp[J]. Cellulose, 2015,22(1):803-809.
doi: 10.1007/s10570-014-0495-9
[21] DUAN C, VERMA S K, LI J, et al. Viscosity control and reactivity improvements of cellulose fibers by cellulase treatment[J]. Cellulose, 2016,23(1):269-276.
doi: 10.1007/s10570-015-0822-9
[22] VIRTANEN T, PENTTILÄ P A, MALONEY T C, et al. Impact of mechanical and enzymatic pretreatments on softwood pulp fiber wall structure studied with NMR spectroscopy and X-ray scattering[J]. Cellulose, 2015,22(3):1565-1576.
[23] GRÖNQVIST S, HAKALA T K, KAMPPURI T, et al. Fibre porosity development of dissolving pulp during mechanical and enzymatic processing[J]. Cellulose, 2014,21(5):3667-3676.
[24] WANG Q, LIU S, YANG G, et al. High consistency cellulase treatment of hardwood prehydrolysis kraft based dissolving pulp[J]. Bioresource Technology, 2015,189:413-416.
doi: 10.1016/j.biortech.2015.04.069 pmid: 25934579
[25] SANGO C, KAUR P, BHARDWAJ N K, et al. Bacterial cellulase treatment for enhancing reactivity of pre-hydrolysed kraft dissolving pulp for viscose[J]. Biotech, 2018,8:271.
[26] CHIRIAC A I, PASTOR F I J, POPA V I, et al. Changes of supramolecular cellulose structure and accessibility induced by the processive endoglucanase cel9b from paenibacillus barcinonensis[J]. Cellulose, 2014,21(1):203-219.
[27] YANG T, WEN W, YIN G, et al. Introduction of the X-ray diffraction beamline of SSRF[J]. Nuclear Science and Techniques, 2015,26(2):020101.
[28] YU J, CHEN K, LI X, et al. Performance and structure changes of the aromatic co-polysulfonamide fibers during thermal-oxidative aging process[J]. Journal of Applied Polymer Science, 2016,133(41):44078.
[29] PANDEY K K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy[J]. Journal of Applied Polymer Science, 1999,71:1969-1975.
[30] BERTRAN S M, BRUCE E D. Determination of cellulose accessibility by differential scanning calorimetry[J]. Journal of Applied Polymer Science, 1986,32(3):4241-4253.
[31] NEWMAN R H. Carbon-13 -NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp[J]. Cellulose, 2004,11(1):45-52.
doi: 10.1023/B:CELL.0000014768.28924.0c
[1] 白刚 刘艳春. 触感清凉棉织物的制备及其性能[J]. 纺织学报, 2018, 39(01): 94-97.
[2] 王乐军 刘怡宁 房迪 李增俊 吕佳滨. Lyocell纤维的国内外研发现状与发展方向[J]. 纺织学报, 2017, 38(04): 164-170.
[3] 孙伟泽 张丽平 李敏 杜长森 王春霞 付少海. 炭黑/Lyocell纤维素膜的制备及其性能[J]. 纺织学报, 2017, 38(03): 28-32.
[4] 杜晓莹 傅佳佳 王鸿博 高卫东 蒋春燕. 超声波处理对纤维素酶法水解竹粉的影响[J]. 纺织学报, 2017, 38(01): 83-87.
[5] 郭营 丁若垚 郁崇文. 亚麻原麻及其粗纱生物酶处理工艺条件的优化[J]. 纺织学报, 2016, 37(4): 70-74.
[6] 吴清涛 王北福 姜洪涛 聂立宏. 超声时间对聚偏氟乙烯/SiO2平板膜性能和结构的影响[J]. 纺织学报, 2016, 37(07): 28-33.
[7] 李甜甜 黄江峰 邵建中. 苎麻织物的纤维素酶与聚氨酯联合抗刺痒整理技术[J]. 纺织学报, 2015, 36(03): 76-82.
[8] 袁久刚 文艺 王平 崔莉 王强 范雪荣. 表面活性剂对纤维素酶水洗性能的影响[J]. 纺织学报, 2014, 35(5): 78-0.
[9] 陈杨栋;陈 婷;李力炯;曹张军;张兴群;. 苎麻微生物脱胶菌株筛选及脱胶效果评价[J]. 纺织学报, 2010, 31(5): 69-73.
[10] 王君;王荣武;吴雄英;谢火胜. 不同纺织品中Lyocell纤维纵向图像特征差异[J]. 纺织学报, 2010, 31(5): 19-23.
[11] 田耀鑫;杨革生;魏孟媛;邵惠丽. 超高相对分子质量纤维素对Lyocell纺丝性能的影响[J]. 纺织学报, 2008, 29(9): 5-9.
[12] 曹静;王鸿博;高卫东;蒋玲玲;常会娟;彭程程. 超声波协同纤维素酶对纯棉色织物超柔整理的影响[J]. 纺织学报, 2008, 29(6): 81-84.
[13] 高恩丽;张树江;夏黎明;余为民. 云芝漆酶在牛仔布生物整理中的应用[J]. 纺织学报, 2007, 28(4): 73-75.
[14] 彭源德;唐守伟;杨喜爱;严理;沈建新;付五兵;熊和平. 夏布酶法后整理条件的优化[J]. 纺织学报, 2007, 28(3): 64-67.
[15] 朱梅;王鸿博. 等离子体及生物酶对滤嘴用醋酸纤维的改性[J]. 纺织学报, 2006, 27(8): 25-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!