纺织学报 ›› 2020, Vol. 41 ›› Issue (07): 1-8.doi: 10.13475/j.fzxb.20190900108
• 纤维材料 • 下一篇
YUAN Wei1, YAO Yongbo2, ZHANG Yumei1(), WANG Huaping1
摘要:
为提高Lyocell纤维制备过程中纤维素的溶解效率和溶液稳定性,分别改变碱性酶处理Lyocell纤维用纤维素浆粕的时间和用量,研究其对浆粕相对分子质量和可及度的影响,并对处理工艺进行优化。结果表明:酶处理后纤维素晶型没有受到破坏,仍是典型的纤维素I型构象;当酶用量为4 000 mL/t,增加处理时间至60 min时,纤维素浆粕的聚合度降为430并趋于稳定;当处理时间为60 min,增加酶的用量至2 000 mL/t时,纤维素浆粕的聚合度由520降低至约430,相对分子质量分布变窄;经过纤维素酶处理后纤维素浆粕的可及表面积有所增加,但晶体结构未发生变化,纤维素酶主要是作用于纤维素分子的无定形区和结晶表面较差有序部分。
中图分类号:
[1] |
WOODINGS C R. The development of advanced cellulosic fibres[J]. International Journal of Biological Macromolecules, 1995,17(6):305-309.
doi: 10.1016/0141-8130(96)81836-8 pmid: 8789330 |
[2] |
KLEMM D, HEUBLEIN B, FINK H P, et al. Cellulose: fascinating biopolymer and sustainable raw material[J]. Angewandte Chemie International Edition, 2005,44:3358-3393.
doi: 10.1002/anie.200460587 pmid: 15861454 |
[3] |
FINK H P, GANSTER J, LEHMANN A. Progress in cellulose shaping: 20 years industrial case studies at fraunhofer iap[J]. Cellulose, 2014,21(1):31-51.
doi: 10.1007/s10570-013-0137-7 |
[4] | STRUNK P, LINDGREN A, ELIASSON B, et al. Chemical changes of cellulose pulp in the processing to viscose dope[J]. Cellulose Chemistry and Technology, 2012,46(9/10):559-569. |
[5] | PEREPELKIN K E. Lyocell fibres based on direct dissolution of cellulose in N-methylmorpholine N-oxide: development and prospects[J]. Fibre Chemistry, 2007,39(2):163-172. |
[6] | ZHANG S, CHEN C, DUAN C, et al. Regenerated cellulose by the lyocell process, a brief review of the process and properties[J]. Bioresources, 2018,13(2):1-16. |
[7] | DONG B K, JAMES J P, SEONG M J, et al. Dry jet-wet spinning of cellulose/N-methylmorpholine N-oxide hydrate, solutions and physical properties of Lyocell fibers[J]. Textile Research Journal, 2005,75(4):331-341. |
[8] | CYRIL C, PATRICK N. Swelling and dissolution mechanisms of regenerated Lyocell cellulose fibers[J]. Cellulose, 2011,18(1):1-15. |
[9] | CHANZY H, PAILLET M, HAGEGE R. Spinning of cellulose from N-methyl morpholine N-oxide in the presence of additives[J]. Polymer, 1990,31(3):400-405. |
[10] |
MI K Y, MOHAMMAD S R, IK M K, et al. Physical properties and fibrillation tendency of regenerated cellulose fiber dry jet-wet spun from high-molecular weight cotton linter pulp/NMMO solution[J]. Fibers and Polymers, 2015,16(8):1618-1628.
doi: 10.1007/s12221-015-5313-y |
[11] | KYOUNG H C, AH R K, BYOUNG U C. Effects of alkali swelling and beating treatments on properties of kraft pulp fibers[J]. BioResources, 2016,11(2):3769-3782. |
[12] |
HELENA H, PER A. Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material[J]. Cellulose, 2005,12(2):177-183.
doi: 10.1007/s10570-004-1038-6 |
[13] | SCHLEICHER H, DANIELS C, PHILIPP B. Changes of cellulose accessibility to reactions in alkaline medium by activation with ammonia[J]. Journal of Polymer Science Polymer Symposia, 1974,47(1):251-260. |
[14] | TAKASHI Y, TOSHIHIKO M, MASAYOSHI S, et al. Characterisation of cellulose treated by the steam explosion method: part 1: influence of cellulose resources on changes in morphology, degree of polymerisation, solubility and solid structure[J]. British Polymer Journal, 1990,22(1):73-83. |
[15] | TIAN C, ZHENG L, MIAO Q, et al. Improving the reactivity of kraft-based dissolving pulp for viscose rayon production by mechanical treatments[J]. Cellulose, 2014,21(5):3647-3654. |
[16] | GAO P. Research progress in the mechanism of cellulase degradation and the molecular structure and function of cellulase[J]. Progress in Natural Science, 2003,13(1):21-29. |
[17] |
ANN C E, MONICA E, GUNNAR H. Improved accessibility and reactivity of dissolving pulp for the viscose process: pretreatment with monocomponent endoglucanase[J]. Biomacromolecules, 2006,7(6):2027-2031.
pmid: 16768429 |
[18] |
GUNNAR H, MARIA C, ROLAND A. Monocomponent endoglucanase treatment increases the reactivity of softwood sulphite dissolving pulp[J]. Journal of Industrial Microbiology and Biotechnology, 2005,32(5):211-214.
doi: 10.1007/s10295-005-0220-7 pmid: 15871037 |
[19] |
MIAO Q, CHEN L, HUANG L, et al. A process for enhancing the accessibility and reactivity of hardwood kraft-based dissolving pulp for viscose rayon production by cellulase treatment[J]. Bioresource Technology, 2014,154:109-113.
pmid: 24384317 |
[20] |
MIAO Q, TIAN C, CHEN L, et al. Combined mechanical and enzymatic treatments for improving the fock reactivity of hardwood kraft-based dissolving pulp[J]. Cellulose, 2015,22(1):803-809.
doi: 10.1007/s10570-014-0495-9 |
[21] |
DUAN C, VERMA S K, LI J, et al. Viscosity control and reactivity improvements of cellulose fibers by cellulase treatment[J]. Cellulose, 2016,23(1):269-276.
doi: 10.1007/s10570-015-0822-9 |
[22] | VIRTANEN T, PENTTILÄ P A, MALONEY T C, et al. Impact of mechanical and enzymatic pretreatments on softwood pulp fiber wall structure studied with NMR spectroscopy and X-ray scattering[J]. Cellulose, 2015,22(3):1565-1576. |
[23] | GRÖNQVIST S, HAKALA T K, KAMPPURI T, et al. Fibre porosity development of dissolving pulp during mechanical and enzymatic processing[J]. Cellulose, 2014,21(5):3667-3676. |
[24] |
WANG Q, LIU S, YANG G, et al. High consistency cellulase treatment of hardwood prehydrolysis kraft based dissolving pulp[J]. Bioresource Technology, 2015,189:413-416.
doi: 10.1016/j.biortech.2015.04.069 pmid: 25934579 |
[25] | SANGO C, KAUR P, BHARDWAJ N K, et al. Bacterial cellulase treatment for enhancing reactivity of pre-hydrolysed kraft dissolving pulp for viscose[J]. Biotech, 2018,8:271. |
[26] | CHIRIAC A I, PASTOR F I J, POPA V I, et al. Changes of supramolecular cellulose structure and accessibility induced by the processive endoglucanase cel9b from paenibacillus barcinonensis[J]. Cellulose, 2014,21(1):203-219. |
[27] | YANG T, WEN W, YIN G, et al. Introduction of the X-ray diffraction beamline of SSRF[J]. Nuclear Science and Techniques, 2015,26(2):020101. |
[28] | YU J, CHEN K, LI X, et al. Performance and structure changes of the aromatic co-polysulfonamide fibers during thermal-oxidative aging process[J]. Journal of Applied Polymer Science, 2016,133(41):44078. |
[29] | PANDEY K K. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy[J]. Journal of Applied Polymer Science, 1999,71:1969-1975. |
[30] | BERTRAN S M, BRUCE E D. Determination of cellulose accessibility by differential scanning calorimetry[J]. Journal of Applied Polymer Science, 1986,32(3):4241-4253. |
[31] |
NEWMAN R H. Carbon-13 -NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp[J]. Cellulose, 2004,11(1):45-52.
doi: 10.1023/B:CELL.0000014768.28924.0c |
[1] | 白刚 刘艳春. 触感清凉棉织物的制备及其性能[J]. 纺织学报, 2018, 39(01): 94-97. |
[2] | 王乐军 刘怡宁 房迪 李增俊 吕佳滨. Lyocell纤维的国内外研发现状与发展方向[J]. 纺织学报, 2017, 38(04): 164-170. |
[3] | 孙伟泽 张丽平 李敏 杜长森 王春霞 付少海. 炭黑/Lyocell纤维素膜的制备及其性能[J]. 纺织学报, 2017, 38(03): 28-32. |
[4] | 杜晓莹 傅佳佳 王鸿博 高卫东 蒋春燕. 超声波处理对纤维素酶法水解竹粉的影响[J]. 纺织学报, 2017, 38(01): 83-87. |
[5] | 郭营 丁若垚 郁崇文. 亚麻原麻及其粗纱生物酶处理工艺条件的优化[J]. 纺织学报, 2016, 37(4): 70-74. |
[6] | 吴清涛 王北福 姜洪涛 聂立宏. 超声时间对聚偏氟乙烯/SiO2平板膜性能和结构的影响[J]. 纺织学报, 2016, 37(07): 28-33. |
[7] | 李甜甜 黄江峰 邵建中. 苎麻织物的纤维素酶与聚氨酯联合抗刺痒整理技术[J]. 纺织学报, 2015, 36(03): 76-82. |
[8] | 袁久刚 文艺 王平 崔莉 王强 范雪荣. 表面活性剂对纤维素酶水洗性能的影响[J]. 纺织学报, 2014, 35(5): 78-0. |
[9] | 陈杨栋;陈 婷;李力炯;曹张军;张兴群;. 苎麻微生物脱胶菌株筛选及脱胶效果评价[J]. 纺织学报, 2010, 31(5): 69-73. |
[10] | 王君;王荣武;吴雄英;谢火胜. 不同纺织品中Lyocell纤维纵向图像特征差异[J]. 纺织学报, 2010, 31(5): 19-23. |
[11] | 田耀鑫;杨革生;魏孟媛;邵惠丽. 超高相对分子质量纤维素对Lyocell纺丝性能的影响[J]. 纺织学报, 2008, 29(9): 5-9. |
[12] | 曹静;王鸿博;高卫东;蒋玲玲;常会娟;彭程程. 超声波协同纤维素酶对纯棉色织物超柔整理的影响[J]. 纺织学报, 2008, 29(6): 81-84. |
[13] | 高恩丽;张树江;夏黎明;余为民. 云芝漆酶在牛仔布生物整理中的应用[J]. 纺织学报, 2007, 28(4): 73-75. |
[14] | 彭源德;唐守伟;杨喜爱;严理;沈建新;付五兵;熊和平. 夏布酶法后整理条件的优化[J]. 纺织学报, 2007, 28(3): 64-67. |
[15] | 朱梅;王鸿博. 等离子体及生物酶对滤嘴用醋酸纤维的改性[J]. 纺织学报, 2006, 27(8): 25-28. |
|