纺织学报 ›› 2020, Vol. 41 ›› Issue (07): 59-66.doi: 10.13475/j.fzxb.20190706308
马莹1,2(), 何田田1, 陈翔1,3, 禄盛1,3, 王友棋2
MA Ying1,2(), HE Tiantian1, CHEN Xiang1,3, LU Sheng1,3, WANG Youqi2
摘要:
为了反映织物内部纱线的空间构型和微观几何结构,针对在织物建模过程中,因忽略纤维间的相互作用而引起的纱线截面形状变化的问题,基于数字单元法理论,提出了一种计算纤维间摩擦力的方法。通过纱线纤维化离散,用数值模拟和仿真方法模拟三维正交织物成型过程,建立了5种精度递进的微观几何结构数值模型。5种模型中的每根纱线分别由4、7、12、19和37根数字纤维表征。研究结果表明:随着纱线纤维化离散程度的提高,仿真时间延长,织物厚度减小,纤维体积分数增大,节点平均作用力下降速度变缓,势能变小;当每根纱线由19根数字纤维组成时,所建织物的微观几何结构数值模型与真实织物样本在显微镜下的内部切片图像较为吻合。
中图分类号:
[1] | 关留祥, 李嘉禄, 焦亚男, 等. 航空发动机复合材料叶片用3D机织预制体研究进展[J]. 复合材料学报, 2018,35(4):748-759. |
GUAN Liuxiang, LI Jialu, JIAO Yanan, et al. Review of 3D woven preforms for the composite blades of aero engine[J]. Acta Materiae Compositae Sinica, 2018,35(4):748-759. | |
[2] | 王旭. 基于3ds Max软件的机织物结构三维建模研究[J]. 安徽工程大学学报, 2013,28(3):27-29. |
WANG Xu. 3D modeling on woven fabric structure by 3ds Max[J]. Journal of Anhui Polytechnic University, 2013,28(3):27-29. | |
[3] | 陈振, 管江明, 邢明杰. 基于TexGen的织物仿真建模及其应用方向[J]. 棉纺织技术, 2016,44(11):81-84. |
CHEN Zhen, GUAN Jiangming, XING Mingjie. Fabric simulation modeling based on TexGen and its application direction[J]. Cotton Textile Technology, 2016,44(11):81-84. | |
[4] | 余育苗, 王肖钧, 李永池, 等. 三维正交机织复合材料的单胞模型及应用[J]. 复合材料学报, 2009,26(4):181-185. |
YU Yumiao, WANG Xiaojun, LI Yongchi, et al. Cell model of 3D orthogonal woven composite and its application[J]. Acta Materiae Compositae Sinica, 2009,26(4):181-185. | |
[5] |
GREEN S D, MATVEEV M Y, LONG A C, et al. Mechanical modelling of 3D woven composites considering realistic unit cell geometry[J]. Composite Structures, 2014(118):284-293.
doi: 10.1016/j.compstruct.2014.07.005 |
[6] |
FREDRIK S, STEFAN H. Spatial modelling of 3D-woven textiles[J]. Composite Structures, 2012,94(5):1495-1502.
doi: 10.1016/j.compstruct.2011.12.003 |
[7] | ISART N, SAID B E, IVANOV D S, et al. Internal geometric modelling of 3D woven composites:a comparison between different approaches[J]. Composite Structures, 2015(132):1219-1230. |
[8] |
WANG Y Q, MIAO Y Y, SWENSON D, et al. Digital element approach for simulating impact and penetration of textiles[J]. International Journal of Impact Engineering, 2010,37(5):552-560.
doi: 10.1016/j.ijimpeng.2009.10.009 |
[9] | GREEN S D, LONG A C, EL SAID B S F, et al. Numerical modelling of 3D woven preform deforma-tions[J]. Composite Structures, 2014(108):747-756. |
[10] | DRACH A, DRACH B, TSUKROV I. Processing of fiber architecture data for finite element modeling of 3D woven composites[J]. Advances in Engineering Software, 2014,72(6):18-27. |
[11] | MIAO Y, ZHOU E, WANG Y, et al. Mechanics of textile composites:micro-geometry[J]. Composites Science & Technology, 2008,68(7):1671-1678. |
[12] | HUANG L, WANG Y, MIAO Y, et al. Dynamic relaxation approach with periodic boundary conditions in determining the 3D woven textile micro-geometry[J]. Composite Structures, 2013,106(12):417-425. |
[13] | 曹薇. 纱线卷绕系统恒张力模糊控制策略研究[J]. 现代纺织技术, 2018(2):84-88. |
CAO Wei. Research on fuzzy control strategy of constant tension for yarn winding system[J]. Advanced Textile Technology, 2018(2):84-88. | |
[14] | 张灵婕, 缪旭红. 纱线断裂功对经编织造性能的影响[J]. 纺织学报, 2018,39(12):37-40. |
ZHANG Lingjie, MIAO Xuhong. Influence of yarn rupture work on performance of warp knitting[J]. Journal of Textile Research, 2018,39(12):37-40.
doi: 10.1177/004051756903900106 |
[1] | 王翔华, 成 玲, 张一帆, 彭海锋, 黄志文, 刘晓志. 三维机织复合材料板簧式起落架结构设计及其有限元分析[J]. 纺织学报, 2020, 41(03): 68-77. |
[2] | 刘俊岭, 孙颖, 陈利. 含变异结构的三维机织复合材料的轴向拉伸性能[J]. 纺织学报, 2019, 40(12): 162-168. |
[3] | 高雄 胡侨乐 马颜雪 张琦 魏毅 邱夷平. 不同结构厚截面三维机织碳纤维复合材料的弯曲性能对比[J]. 纺织学报, 2017, 38(09): 66-71. |
|