纺织学报 ›› 2020, Vol. 41 ›› Issue (07): 72-77.doi: 10.13475/j.fzxb.20190904806

• 纺织工程 • 上一篇    下一篇

斜吹气流入射角对纱线折入的影响

刘宜胜(), 徐光逸   

  1. 浙江理工大学 机械与自动控制学院, 浙江 杭州 310018
  • 收稿日期:2019-09-18 修回日期:2020-04-04 出版日期:2020-07-15 发布日期:2020-07-23
  • 作者简介:刘宜胜(1979—),男,副教授,博士。主要研究方向为智能纺织装备。E-mail: lysleo@zstu.edu.cn
  • 基金资助:
    浙江省自然科学基金资助项目(LY18E050018);浙江理工大学科研业务费专项资金资助项目(19022202-Y)

Effect of incident angle of oblique airflow on weft yarn tucking

LIU Yisheng(), XU Guangyi   

  1. Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2019-09-18 Revised:2020-04-04 Online:2020-07-15 Published:2020-07-23

摘要:

为优化无梭织造中纬纱气动折入装置喷嘴的设计,针对纱线线头进行气动折入时运动稳定性不高的问题,通过有限元分析软件建立二维流固耦合模型来研究纱线在不同角度气流作用下的运动规律。采用高速摄像机拍摄气动折入装置中纱线在不同工况下的运动状况,并与二维流固耦合仿真结果相验证。在仿真过程中,纱线固定端位于坐标原点,其初始位置处于X轴正方向。纱线自由端在斜吹气流作用下绕原点向Y轴负方向运动;当纱线运动至接近与Y轴平行时,斜吹气流关闭,折入气流打开并作用在纱线上使其继续运动至完成折入。研究结果表明:斜吹气流角度为90°、60°、45°、30°时,纱线均能在3.98 ms内完成折入动作;不同入射角度的斜吹气流对纱线折入稳定性有显著的影响;入射角度为45°的斜吹气流最为优异,大大提高了纱线折入稳定性。

关键词: 气动折入装置, 斜吹气流, 折入气流, 流固耦合, 纱线折入, 无梭织造

Abstract:

In order to optimize the nozzle position of the pneumatic weft yarn tucking device for shuttleless weaving machines, aiming at low stability of weft yarn head during pneumatic tucking, a two-dimensional fluid-structure interaction model was established using finite element analysis software to study the motion of weft yarn head under different working conditions. A high-speed camera was used to capture the yarn motion in the pure pneumatic tucking device under different working conditions and the results were analyzed in conjunction with the two-dimensional fluid-structure interaction simulation results. During the simulation, the fixed end of the yarn was located at the origin, and its initial position was in the positive direction of the X-axis. The free end of the yarn moved around the origin in the negative direction of the Y-axis under the action of the oblique airflow; When the yarn moved close to be parallel to the Y-axis, the oblique airflow was closed, and the tucking airflow was opened and acted on the yarn to continue to move until the tucking was completed. The results show that the weft yarn can be tucked in 3.98 ms under the airflow angle of 90°, 60°, 45° and 30°. The oblique airflow at different incident angles has a significant effect on yarn tucking stability, by comparing the movement of the yarns with the angle of oblique airflow, it is obtained that the oblique airflow with an incident angle of 45° is the most excellent, which greatly improves the yarn tucking stability.

Key words: pneumatic tucking device, oblique airflow, tucking airflow, fluid-structure interaction, yarn tucking, shuttleless weaving

中图分类号: 

  • TS183.92

图1

气动折入装置二维气流场模型"

图2

气动折入装置实验平台"

图3

斜吹孔位置"

图4

气流场中入射角为90°时不同时间步下纱线的运动状态"

图5

气流场中入射角为60°时不同时间步下纱线的运动状态"

图6

气流场中入射角为45°时不同时间步下纱线的运动状态"

图7

气流场中入射角为30°时不同时间步下纱线的运动状态"

图8

斜吹角度为90°、60°和45°时纱线的运动状态"

[1] 钟智丽, 于少军. 喷气织机的最新技术和发展趋势[J]. 纺织学报, 2000,21(2):61-62.
ZHONG Zhili, YU Shaojun. The latest technology and development trend of air-jet loom[J]. Journal of Textile Research, 2000,21(2):61-62.
[2] 张萍. 无梭织机布边实用性和经济性分析[J]. 上海纺织科技, 2006(11):37-38.
ZHANG Ping. About the practical and economic analysis of selvage made on shutteless loom[J]. Shanghai Textile Science & Technology, 2006(11):37-38.
[3] 李小明, 周香琴, 周巧燕. 折入边装置钩针驱动机构的分析与优化[J]. 浙江理工大学学报(自然科学版), 2015,33(5):356-359.
LI Xiaoming, ZHOU Xiangqin, ZHOU Qiaoyan. Analysis and optimization of crochet hook driving mechanism in tuck-in selvedge device[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences), 2015,33(5):356-359.
[4] 刘培德, 张树杰, 高玉刚, 等. 一种筘座直连式气动光边装置:201710043032.3[P]. 2019-08-13.
LIU Peide, ZHANG Shujie, GAO Yugang, et al. Pedestal direct connection pneumatic edge device: 201710043032.3[P]. 2019-08-13.
[5] 郭岭岭, 宋秋霞, 潘建军. 气动式无针折边装置在喷气织机上的使用要点[J]. 棉纺织技术, 2013,41(8):64.
GUO Lingling, SONG Qiuxia, PAN Jianjun. The main points of using air tuckers in air jet loom[J]. Cotton Textile Technology, 2013,41(8):64.
[6] 赵敬. 必佳乐:轮胎帘子布织机可使用连续钢筘的喷气折入边装置[J]. 国际纺织导报, 2012(4):20-21.
ZHAO Jing. Picanol: Airtuckers with continuous reeds for tire cord weaving machines[J]. Melliand China, 2012(4):20-21.
[7] KIM J H, SETOGUCHI T, KIM H D. Numerical study of sub-nozzle flows for the weft transmission in an air jet loom[J]. Procedia Engineering, 2015,105:264-269.
[8] 邢景棠, 周盛, 崔尔杰. 流固耦合力学概述[J]. 力学进展, 1997,27(1):19-38.
XING Jingtang, ZHOU Sheng, CUI Erjie. Overview of fluid-solid interaction mechanics[J]. Advances in Mechanics, 1997,27(1):19-38.
[9] 王征, 吴虎, 贾海军. 流固耦合力学的数值研究方法的发展及软件应用概述[J]. 机床与液压, 2008,36(4):192-195.
WANG Zheng, WU Hu, JIA Haijun. The development of numerical approach method of fluid-structure interaction mechanics and the application of commercial soft wares[J]. Machine Tool & Hydraulics, 2008,36(4):192-195.
[10] OSMAN A, MALENGIER B, MEULEMEESTER S D, et al. Simulation of air flow-yarn interaction inside the main nozzle of an air jet loom[J]. Textile Research Journal, 2018,88(10):1173-1183.
[1] 郭臻, 李新荣, 卜兆宁, 袁龙超. 喷气涡流纺中纤维运动的三维数值模拟[J]. 纺织学报, 2019, 40(05): 131-135.
[2] 刘宜胜 裘燚斌 吴震宇. 气动折入装置异向射流场中纱线的运动规律[J]. 纺织学报, 2018, 39(07): 122-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!